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1. Introduction1

The main contribution in Niiler (2020) is a new α level correction2

method for multiple testing in a functional data context. A secondary3

contribution is the proposal to use the nonparametric LOESS smoothing4

method of Cleveland & Devlin (1988) to overcome problems with irregu-5

larly sampled functional data. Unfortunately, both contributions generally6

lead to invalid statistical inferences and I will explain these issues in the7

following.8

In Section 2, I briefly explain the α level correction method of Niiler9

(2020) and introduce necessary notation. In Section 3, I explain the sta-10

tistical shortcomings in Niiler (2020) and demonstrate that the α level11

correction of Niiler (2020) leads to invalid inferences. A short conclusion12

is given in Section 4.13

2. The α level correction method of Niiler (2020)14

Niiler (2020) considers the statistical problem of testing for differ-
ences between mean functions of two groups (a and b) using two inde-
pendent samples of biomechanical functional curve data. Exemplary data
are shown, for instance, in Fig 1 in Niiler (2020). The testing is done using
a series of M many two-sample test statistics

t(gj) =
µ̂a(gj)− µ̂b(gj)√

σ̂2
a(gj)

Na
+

σ̂2
b (gj)

Nb

, j = 1, . . . ,M, (1)

where each test statistic t(gj) conducts a statistical hypothesis test specific15

to a grid point gj with, for instance, 0% ≤ g1 < · · · < gj < · · · < gM ≤16

100% when using a standardized time (gait cycle) domain [0%, 100%]. The17

estimates µ̂a(gj), µ̂b(gj), σ̂
2
a(gj), and σ̂2

b (gj) denote the mean and variance18

estimates of groups a and b at grid point gj, and Na and Nb denote the19

samples sizes. If one uses the classic sample mean and variance estimates,20

the test statistic in (1) becomes the classic Welch’s t-test. Niiler (2020),21
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however, suggests using the mean and variance estimates as computed by22

the R function loess for local polynomial regression (Cleveland & Devlin,23

1988; R Core Team, 2021).24

The jth test statistic, t(gj), tests the null hypothesis, H0, of equal25

means against the two-sided alternative, H1:26

H0(gj): µa(gj) = µb(gj)
H1(gj): µa(gj) 6= µb(gj)

27

However, one is generally not interested in the test decision at a single28

grid point, gj, but one uses the whole family of M many test statistics29

{t(g1), . . . , t(gM)} to find regions in [0%, 100%] over which the mean func-30

tions are statistically different from each other. This leads to a severe31

multiple testing problem since the number of tests, M , can be arbitrarily32

large.33

Statistical multiple testing procedures must control the family-wise
type I error rate. I.e., the probability of observing type I errors in at least
one of the tests {t(g1), . . . , t(gM)} must be bounded from above by the
pre-chosen significance level α,

PH0

(
reject H0(gj) for at least one j ∈ {1, . . . ,M}

)
≤ α (2)

with, for instance, α = 0.05.34

To control the family-wise type I error rate, one could use, for instance,35

the classic Bonferroni correction, where each point-wise null hypothesis36

H0(gj) is tested at the reduced significance level of α′ = α/M . However,37

for biomechanical curve data, Bonferroni corrections can result in unnec-38

essarily conservative (low power) testing procedures since biomechanical39

curve data are typically relatively smooth and, therefore, the point-wise40

test statistics {t(g1), . . . , t(gM)} are typically strongly correlated with each41

other. These correlations are ignored by the Bonferroni correction. Similar42

issues arise with other standard α level corrections such as, for instance,43

the Holm-Bonferroni or the Hochberg correction.44

The main contribution in Niiler (2020) is the proposal of a new, less
conservative α level correction which tries to take into account the corre-
lations between the test statistics {t(g1), . . . , t(gM)}. The proposed cor-
rection is given in equation (2) in Niiler (2020), but also presented here
for convenience:

α′ =
α

M(1− ρ̂2) + ρ̂2
, (3)

where Niiler (2020) sets α = 0.05 and where ρ̂ denotes the sample auto-
correlation coefficient between adjacent test statistics t(gj) and t(gj+1)

ρ̂ =
(M − 1)−1

∑M−1
j=1 (t(gj)− t̄ )(t(gj+1)− t̄ )

M−1
∑M

j=1(t(gj)− t̄ )2

with t̄ = M−1∑M
j=1 t(gj). Niiler (2020) motivates his proposal as follows:45

While the case of perfect auto-correlation ρ̂ = 1 leads to no α level correc-46

tion (α′ = α), the case of no auto-correlation ρ̂ = 0 leads to the Bonferroni47

correction (α′ = α/M).48
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3. Main critique: Invalid α level correction49

The auto-correlation coefficient ρ̂ is not a meaningful statistic in case50

of non-stationary time series.1 But even if t(g1), . . . , t(gM) were a station-51

ary series of test statistics, ρ̂ would only measure the correlation between52

adjacent test statistics t(gj) and t(gj+1). All the other pair-wise correla-53

tions are not considered. Therefore, one cannot expect that this method54

is able to control the family-wise type I error rate – except for trivial and55

practically irrelevant special cases. Indeed, Niiler (2020) does not provide56

any theoretical justification for his α correction method in (3), and, as far57

as I know, there is no similar correction in the statistical literature.58

Niiler (2020) uses a Monte Carlo simulation study to demonstrate that59

his α level correction is able to control the family-wise type I error rate;60

see Appendix C of the supplementary material of Niiler (2020). Simula-61

tions, however, cannot replace theoretical considerations since the consid-62

ered simulation scenarios may only reflect non-generalizing special cases63

– which is exactly what happened in Niiler (2020).64

The only reason, why Niiler (2020) was able to demonstrate that his
α level correction is able to control the family-wise type I error rate, is
the very specific choice of his simulation study. Niiler (2020) considers the
following overly simple type of random functions

sin(x) + Z, with x ∈ [0, 2π] and Z ∼ N (0, 1) (4)

which are just random vertical shifts of a deterministic sinus function; see65

Figure 1 (A) and (B).
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Figure 1: Plots (A) and (C): Exemplary functions from the sinus-shift random process
in (4) as used in the Monte Carlo simulation study in Niiler (2020) for checking the
familiy-wise type I error rate. Plot (C): test statistic series t(g1), . . . , t(gM ) computed
using the LOESS smoothing method suggested by Niiler (2020) with smoothing pa-
rameters spar = 0.01 and spar = 0.75. Additionally, the classic Welch’s t-test statistics
series is shown.

66

For this special case, the Welch’s t-test statistics t(g1), . . . , t(gM) are67

all exactly equal to each other (see Fig. 1 (C)) which demonstrates that68

1Biomechanical curve data are usually not stationary.
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Figure 2: Exemplary functions from the B-splines random process in (5) as used in my
Monte Carlo simulation for checking the familiy-wise type I error rate.

there is no multiple testing problem in this special case. All t-tests are69

either simultaneously significant or not, and, therefore, the family-wise70

type I error rate coincides with the type I error rate of a single t-test71

which makes the stochastic process in (4) unsuitable for checking α level72

correction methods.73

In the following, I consider a practically more relevant situation by
drawing random functions from

f(t) =
10∑
k=1

ZkBk,10(t), with t ∈ [0%, 100%], (5)

where Zk ∼ N (0, 1) and where Bk,10(t) denotes the kth cubic B-spline74

function based on equidistant knots in [0, 100]; see Figure 2. B-spline func-75

tions have compact supports which guarantees that the random functions76

in (5) consist of independent as well as dependent stochastic components77

making this case suitable for checking α level correction methods.78

To check the family-wise type I error rate of the α level correction79

in Niiler (2020), I simulte Na and Nb many functions from (5). Both80

groups a and b have the same population mean (zero) such that all M81

null hypotheses H0(gj): µa(gj) = µb(gj), j = 1, . . . ,M , are fulfilled. Under82

this scenario, the family-wise type I error rate must be smaller or equal83

to the pre-selected significance level α = 0.05; otherwise, the α correction84

method is invalid and cannot be used in practice.85

Table 1 shows my simulation results based on 10,000 Monte Carlo repli-86

cations. To check the effect of different choices for the number of sampling87

grid points M , I consider the values M ∈ {50, 75, 100}. To check the ef-88

fect of different sample sizes, I consider the values Na = Nb ∈ {10, 20, 50}.89

The LOESS smoother used by Niiler (2020) involves setting a smoothing90

parameter, where I use a small smoothing parameter span = 0.01 and a91

relatively large smoothing parameter span = 0.75. I compare the infer-92

ence method of Niiler (2020) with a Bonferroni adjusted series of Welch’s93

t-tests and with the random field theory based method SPM1d (Pataky,94

2016). For the latter method, I use the R package ffscb which contains95
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SPM1d based bands, but also more general simultaneous confidence bands96

as proposed by Liebl & Reimherr (2020).

Table 1: False positive (type I error) rates under the null-hypothesis for a pre-selected
significance level α = 0.05

Niiler (2020) t-test SPM1d
Na = Nb M (span= 0.01) (span= 0.75) (Bonferroni)

10 50 0.10 0.82 0.00 0.05
10 75 0.60 0.92 0.00 0.05
10 100 0.81 0.97 0.00 0.06

20 50 0.19 0.88 0.01 0.05
20 75 0.73 0.95 0.00 0.05
20 100 0.88 0.98 0.00 0.05

50 50 0.25 0.90 0.01 0.05
50 75 0.77 0.96 0.01 0.05
50 100 0.91 0.98 0.00 0.05

97

The only two methods that are able to control the type I error rate in98

this simulation study are the point-wise t-tests with Bonferroni correction99

and the random fields theory based method SPM1d. While the Bonferroni100

correction is overly conservative, SPM1d is able to exploit the significance101

level α = 0.05 very well. The inference procedure proposed by Niiler102

(2020) fails to control the type I error rate severely and, therefore, leads103

to invalid inferences.104

Further issues. Niiler (2020) misses several further issues. For instance,105

the standard errors computed by the loess function in R are invalid for106

smoothing functional data when M becomes large (see Liebl, 2019). More-107

over, nonparametric smoothing methods like LOESS have biased estimates108

and can suffer from boundary problems both leads to distorted estimation109

results as indicated in Figure 2 (C). To get valid inference in finite samples,110

one would need bias and boundary corrections – both are not considered111

in Niiler (2020).112

4. Conclusion113

The development of simultaneous inference methods for functional114

data is an active research field in statistics (see Degras (2011), Cao et al.115

(2012), Wang et al. (2020), Pini & Vantini (2017), Choi & Reimherr116

(2018), Liebl & Reimherr (2020), and many others). New steps forward117

in this literature are often published in the most prestigious statistical118

science journals. In my humble opinion, the work of Niiler (2020) fails to119

make a contribution to this literature.120

Every statistical testing procedure can lead to invalid inferences when121

misapplied. However, this is different here. The proposed α level testing122

procedure of Niiler (2020) will lead to false inferences even when “cor-123

rectly” applied. This is a serious issue since the method is already applied124

in the literature (see Shoja et al., 2020).125
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