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Abstract

We develop novel, fast simultaneous prediction and confidence bands for concurrent func-
tional linear regression with time-adaptive critical values. The bands balance the local false
positive rate to enable local interpretability, provide covariate-adjusted conditional guar-
antees, and remain valid under fat-tailed error processes. In simulations, our bands are
more precise than conformal prediction while delivering conditional (not merely marginal)
coverage. We illustrate the method on Sprint Start Kinetics data motivated by World
Athletics Rule 6.3.4.

Keywords: functional data analysis, simultaneous inference, statistical fairness guaran-
tees, false positive rate balance

1 Introduction

Functional data analysis has emerged as a powerful framework for studying data observed
as functions over a continuum, such as time or space (Ramsay and Silverman, 2005; Ferraty
and Vieu, 2006; Horváth and Kokoszka, 2012; Kokoszka and Reimherr, 2017). Many classi-
cal methods from multivariate statistics have been extended to this setting, including a wide
range of regression models (see, for instance, Cai and Hall, 2006; Hall and Horowitz, 2007;
Crambes et al., 2009). Yet, methods and theoretical guarantees for simultaneous confi-
dence bands (SCBs) and, in particular, simultaneous prediction bands (SPBs) in functional
regression remain limited.

In this paper, we contribute novel simultaneous prediction and confidence bands for
functional regression models. Inference in such models is challenging and often infeasible,
since the typically ill-posed inverse problem induces a lack of tightness in the estimation,
which in turn prevents asymptotic normality (Cardot et al., 2007). We focus on the concur-
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rent functional linear regression model, where this tightness issue does not arise and which
is among the most frequently applied functional regression models in the literature (see,
for instance, Zhang et al., 2011; Li et al., 2016; Chu et al., 2016; Ghosal et al., 2020; Torti
et al., 2021; Petrovich et al., 2024; Depaoli et al., 2024). Nonetheless, our methodology also
applies to other functional linear regression models without tightness issues, such as the
functional factor regression model of Otto and Winter (2025).

Our simultaneous prediction bands are a key contribution. To the best of our knowledge,
there is no existing method for constructing SPBs for the concurrent functional linear
regression model beyond the conformal-inference approaches of Diquigiovanni et al. (2022b)
and Fontana et al. (2023). However, as shown in Lei and Wasserman (2014), conformal
prediction regions provide only marginal (unconditional) coverage guarantees. While there
are conformal methods that achieve asymptotic conditional coverage for real-valued data
(Izbicki et al., 2020), they rely on density estimation which does not extend readily to
functional data (Delaigle and Hall, 2010). This lack of conditional coverage is consequential
in our case study (Section 4), which requires coverage conditional on given covariate values,
and our simulation studies (Section 3) further show that conformal-based SPBs are overly
wide.

While point-wise prediction intervals typically assume Gaussian errors, our simultaneous
prediction bands accommodate heavy-tailed error processes, which is particularly valuable in
settings with costly false positives, as in our application (Section 4). Our bands build upon
the work of Liebl and Reimherr (2023) and generalize their results to predictive inference
for the concurrent functional linear regression model. In addition, we extend their work
by establishing uniform asymptotic normality results for the concurrent functional linear
regression model.

Moreover, unlike existing methods, our bands are based on adaptive critical value func-
tions, allowing their width to adjust to different objectives. In this work, we use this feature
to construct bands that support inference under fairness constraints, such as maintaining
a balanced false positive rate across the domain of the functions. We also explain how this
framework can be used to derive bands with minimized width.

In our application, we address the long-standing methodological challenge of assessing
whether amputee sprinters gain a competitive advantage from prostheses under Rule 6.3.4 of
World Athletics, which requires evidence “on the balance of probabilities” (World Athletics,
2020a,b). Existing statistical methods have failed in this context, leading to inconclusive or
even retracted studies. Our simultaneous prediction bands fill this gap by providing condi-
tional, covariate-adjusted, and distributionally robust prediction bands for high-resolution
functional data such as sprint start force curves. Applying them to force data from amputee
and non-amputee sprinters reveals systematic differences in the sprint start, offering strong,
statistically grounded evidence relevant to Rule 6.3.4.

None of the existing works on functional predictive inference address the problem of
conditional predictive inference in the concurrent linear regression model. The early works
of Olshen et al. (1989) and Lenhoff et al. (1999) are inspired by biomechanic curve data, but
do not allow for covariate adjustments. More recently, Franco-Villoria and Ignaccolo (2017)
and Paparoditis and Shang (2023) develop SPBs for spatial functional data and functional
time series, respectively, but also these works do not take into account covariate adjustments.
In related works, Rathnayake and Choudhary (2016) and de Silva and Choudhary (2024)
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propose bootstrap-based simultaneous tolerance bands for Gaussian and exponential family
functional data; however, these also do not allow for covariate adjustments. Das et al.
(2023) propose a linear mixed-effects model for predictive inference in a biomechanical
functional data context, however, their method is valid only point-wise and thus does not
allow simultaneous inference over the domain of the curves. Kraus (2025) also contributes
simultaneous prediction bands, but with a focus on reconstructing curves from noisy discrete
observations that are assumed to be normally distributed.

The literature on SCBs is substantially broader than the literature on SPBs, but the
majority of contributions also do not allow for covariate adjustments (see, for instance,
Bunea et al., 2011; Cao et al., 2012; Cao, 2014; Degras, 2011; Wang et al., 2020; Telschow
and Schwartzman, 2022; Liebl and Reimherr, 2023). SCBs that take into account covariate
adjustments in a function-on-scalar regression model are contributed by Chang et al. (2017)
and Abramowicz et al. (2018). Belloni et al. (2018) develop a very general theory that allows
constructing SCBs for functional parameters. Chang and McKeague (2024) contribute a
SCB for the concurrent functional linear regression model and is probably the closest to our
work on SCBs. None of the former works on SCBs, however, allow for local inference over
sub-intervals, [al, bl] ⊂ [a, b]. Most similar to our SCB is the SCB of Ecker et al. (2024),
which, like ours, builds upon the work of Liebl and Reimherr (2023). However, Ecker et al.
(2024) require the assumption of a Gaussian error process, while our approach only assumes
that the error process has finite variances and two-times continuously differentiable sample
paths.

The remainder of the paper is organized as follows. Section 2 presents the model, the
estimators, and our simultaneous prediction and confidence bands, including the algorithm
for computing fair (Algorithm 1) critical value functions. Section 3 reports a simulation
study comparing our approach with conformal inference bands. Section 4 contains the
case study on Sprint Start Kinetics data, demonstrating how our methods can be used
to assess Rule 6.3.4 of World Athletics (World Athletics, 2020a,b). Section 5 concludes
with a discussion of the results. Mathematical derivations are provided in Appendix A.
Code and data to reproduce both the simulation study and the case study are available at
https://github.com/timmens/fspb.

2 Bands for Concurrent Regression

Let Y = {Y (t) ∈ R, t ∈ [a, b]} and X = {X(t) ∈ RK , t ∈ [a, b]} be stochastic processes,
where X is twice continuously differentiable almost surely. For simplicity, and without
loss of generality, we standardize the interval [a, b] ⊂ R to [0, 1], and focus on this case
throughout. We study the concurrent function-on-function linear regression model (Hastie
and Tibshirani, 1993; Ramsay and Silverman, 2005, Ch. 14)

Y (t) = XT(t)β(t) + ε(t), for t ∈ [0, 1], (1)

where β = {β(t) ∈ RK , t ∈ [0, 1]} is the twice continuously differentiable parameter func-
tion and ε = {ε(t) ∈ R, t ∈ [0, 1]} denotes an almost surely twice continuously differen-
tiable stochastic error process, with covariance function σε(s, t|X) = E[ε(s)ε(t)|X]. The
error is assumed to be mean independent of X, such that E[ε(t)|X] = 0 for all t ∈ [0, 1].
We consider the case of an independent and identically distributed (iid) random sample
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(Y1, X1), . . . , (Yn, Xn) ∼iid (Y,X). The squared cross-moments of (XT(t), ε(t)) with itself,
as well as their first and second derivatives, are assumed to be finite in the supremum norm.
We further require that ΣX(s, t) = E[X(s)XT(t)] has full rank in an open neighborhood
around the diagonal s = t, for all t ∈ [0, 1]. In the special case when X contains only
constant functions, Model (1) simplifies to the function-on-scalar model.

While the estimation of confidence bands does not require a distributional assumption
on the error term, such an assumption is necessary in the case of prediction bands, as
required by our application. A common assumption in the literature on prediction bands
is that the error term is Gaussian. To deal with heavy-tailed phenomena, and to provide
conservative inference in the case of thin-tailed phenomena, which is particularly useful in
cases with costly false positives, as in our application (Section 4), we model a heavy-tailed
stochastic error process. Specifically, for our prediction bands, we assume that the error
process is a Student’s t type of process with ν > 4 degrees of freedom, defined as

ε = Z
√
ν/χ2

ν , (2)

where χ2
ν is a real-valued Chi-squared distributed random variable with ν degrees of freedom

that is independent of X, Z = {Z(t), t ∈ [0, 1]} is a mean-zero Gaussian process with
covariance kernel σZ(s, t|X) = E[Z(s)Z(t)|X], and where Z and χ2

ν are independent. The
covariance kernel of the error process is thus given by σε(s, t|X) = σZ(s, t|X)ν/(ν − 2).
Note that the error distribution is Gaussian in the case of ν → ∞. The above-described
setup and further regularity assumptions are listed in Appendix A.

2.1 Pointwise Confidence and Prediction Bands

Let (Ynew, Xnew) ∼ (Y,X) denote a new data pair, independent of the original sample,
following Model (1), that is Ynew(t) = XT

new(t)β(t)+εnew(t), where εnew is the corresponding
error term. Assume we have observed the predictor function Xnew = xnew, but not Ynew.
For confidence bands (CB), we construct bands around the conditional mean response
E [Ynew(t)|Xnew(t) = xnew(t)] = xTnew(t)β(t), while for prediction bands (PB), we aim to
construct bands around the response itself Ynew(t) = xTnew(t)β(t) + εnew(t), taking into
account the uncertainty in the error term. We begin with the derivation of pointwise
confidence and prediction bands for which the coverage probability of 1 − α (for example,
α = 0.05) is guaranteed to hold at each t ∈ [0, 1]. In Section 2.2, we generalize these
to simultaneous confidence and prediction bands, for which the coverage probability is
guaranteed to hold simultaneously for all t ∈ [0, 1].

2.1.1 Pointwise Confidence Band

A natural estimator of the conditional mean response is xTnew(t)β̂(t), where β̂(t) denotes the
functional ordinary least squares (OLS) estimator

β̂(t) =

(
n∑

i=1

Xi(t)X
T
i (t)

)−1 n∑
i=1

Xi(t)Yi(t), t ∈ [0, 1]. (3)
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From classical asymptotic theory on the OLS estimator (for example, Hayashi, 2000, chap.
2.3) it follows that, pointwise for each t ∈ [0, 1]

√
n (ĉCB(t, t))

−1/2
(
xTnew(t)β̂(t)− xTnew(t)β(t)

)
d−→ N (0, 1), (4)

as n → ∞, where ĉCB(s, t) is a consistent estimator of the asymptotic variance

cCB(s, t) = xTnew(s)Σ
−1
X (s, t)ΣXε(s, t)Σ

−1
X (s, t)xnew(t), (5)

with ΣX(s, t) = E[X(s)XT(t)] and ΣXε(s, t) = E[X(s)ε(s)ε(t)X(t)]. While it is not neces-
sary in the pointwise case to define objects for time points (s, t) instead of just t, we do so
to align our notation with the simultaneous case.

Under homoskedasticity, (5) simplifies to cCB(t, t) = xTnew(t)σε(t, t)Σ
−1
X (t, t)xnew(t), which

can be estimated using a plug-in approach with Σ̂X(s, t) = n−1
∑n

i=1Xi(s)X
T
i (t) and

σ̂ε(s, t) = n−1
∑n

i=1 ei(s)ei(t), with ei(t) = Yi(t)−XT
i (t)β̂(t) denoting the residual.

Under heteroskedasticity, ΣXε can be estimated using a heteroskedasticity-consistent
estimator Σ̂Xε, for example, the HC3 estimator

Σ̂Xε(s, t) = n−1
n∑

i=1

ei(s)ei(t)(1− hi)
−2Xi(s)X

T
i (t),

where hi denotes the leverage score for the i-th observation (see e.g, White, 1980; Long
and Ervin, 2000; Cribari-Neto, 2004). Analogously, cCB can then be estimated by a plug-in
approach

ĉCB(t, t) = xTnew(t)Σ̂
−1
X (t, t)Σ̂Xε(t, t)Σ̂

−1
X (t, t)xnew(t).

Inverting (4) leads to the asymptotic, pointwise (1− α) confidence band for xTnew(t)β(t),

CB1−α(t) =

[
xTnew(t)β̂(t)±

qα,n√
n
ĉCB(t, t)

1/2

]
, (6)

where qα,n is the (1 − α/2)-quantile of any distribution that is asymptotically equivalent
to the standard normal distribution. A popular choice is the Student’s t distribution with
n −K degrees of freedom, which is more conservative in finite samples than the standard
normal distribution, and can therefore act as a finite sample correction for the otherwise
unconsidered estimation errors in ĉCB(t, t); see, for example, Hansen (2022, chap. 7.13.)

2.1.2 Pointwise Prediction Band

To construct a pointwise prediction band for Ynew(t), in addition to the estimation error of
β̂(t), we need to take into account the distribution of the error term εnew(t). From (4) we
know that Ynew(t)− xTnew(t)β̂(t) = oP (1) + εnew(t), pointwise for each t ∈ [0, 1]. And hence,
pointwise for each t ∈ [0, 1],

ĉPB(t, t)
−1/2

(
xTnewβ̂(t)− Ynew(t)

)
d−→ tν , (7)

as n → ∞, where tν is Student’s t-distributed with ν degrees of freedom, and where ĉPB(t, t)
is a consistent estimator of the conditional scaling covariance σZ(t, t|xnew). Typically,
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ĉPB(t, t) also contains a finite sample correction, such as ĉPB(t, t) = ĉCB(t, t)/n+ σ̂Z(t, t|xnew),
which can be motivated by the fact that

Var[xTnew(t)β̂(t)− Ynew(t) | {Xi}ni=1, Xnew = xnew]

= Var[xTnew(t)β̂(t)− (xTnew(t)β(t) + εnew(t)) | {Xi}ni=1, Xnew = xnew]

= Var[(xTnew(t)β̂(t)− xTnew(t)β(t))− εnew(t) | {Xi}ni=1, Xnew = xnew]

≈ ĉCB(t, t)/n+ σε(t, t|xnew).
Notice that the second summand of ĉPB is an estimator of σZ and not σε, in order to obtain
the correct limiting distribution in (7). Following the methodology of Singh (1988), the
degrees of freedom parameter ν can be estimated using

ν̂ =

{
mint∈[0,1]{ν̂(t) : â(t) > 3 + δ} if ∃t ∈ [0, 1] : â(t) > 3 + δ,

30 otherwise,

where ν̂(t) = 4 + 6/(â(t) − 3) are the degrees of freedom estimates at time t, with â(t) =

n−1
∑n

i=1 ei(t)
4
(
n−1

∑n
i=1 ei(t)

2
)−2

denoting the kurtosis estimates of the residuals, and δ
being a small positive number (for instance, δ = 0.1). If the kurtosis estimates are all close
to 3, we interpret this as evidence for Gaussian tails and therefore set ν̂ = 30. Given the
distributional assumption on the error term, a natural estimator of σZ(t, t|xnew) is then
σ̂Z(t, t|xnew) = σ̂ε(t, t|xnew)(ν̂ − 2)/ν̂, where the conditional variance estimator σ̂ε(t, t|xnew)
can be constructed relying on functional form assumptions or non-parametric methods
(see, for example, Hansen, 2022, chap. 19.15; Liebl, 2019a,b). Inverting (7) leads to the
asymptotic, pointwise (1− α) prediction band for Ynew(t) = xTnew(t)β(t) + εnew(t),

PB1−α(t) =
[
xTnew(t)β̂(t)± qα,ν̂ ĉPB(t, t)

1/2
]
, (8)

where qα,ν̂ denotes the (1− α/2)-quantile of the univariate Student’s t distribution with ν̂
degrees of freedom.

2.2 Simultaneous Confidence and Prediction Bands

The pointwise bands in (6) and (8) are valid only at each t ∈ [0, 1]. In general, this means
that the probability of the whole curve falling in the confidence (or prediction) band is
not guaranteed to be at least 1 − α. Building upon the framework of Liebl and Reimherr
(2023), we solve this problem by constructing time-adaptive critical value functions that
take into account the correlation structure of the asymptotic process. A key object in this
construction is what Liebl and Reimherr (2023) call the roughness function τ , defined for
any covariance kernel c as

τc(t) =

(
∂2

∂s∂t

c(s, t)√
c(s, s)c(t, t)

∣∣∣∣
(s,t)=(t,t)

)1/2

,

measuring the local variability of a process with covariance c, and thereby enabling the
quantification of the multiple testing problem’s extent. In the following, we will show that
the pointwise limit statements (4) and (7) extend to the space of continuous functions, when
considering convergence of the process as a whole, and how to use these results to construct
simultaneous confidence and prediction bands guided by Liebl and Reimherr (2023).
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2.2.1 Simultaneous Confidence Bands

We begin this section by extending the limit result from Equation (4) to the whole process.

Theorem 1 Let β̂ be the OLS estimator of β as defined by Equation (3). Under our model
setup and some additional regularity conditions (see Appendix A), we find that{√

n (ĉCB(t, t))
−1/2

(
xTnew(t)β̂(t)− xTnew(t)β(t)

)
, t ∈ [0, 1]

}
d−→ GP(0, cSCB), (9)

where the convergence happens in C[0, 1] and GP(0, cSCB) denotes a mean-zero Gaussian
process with covariance kernel cSCB(s, t) = cCB(s, t)/

√
cCB(s, s)cCB(t, t).

A proof of Theorem 1 is provided in Appendix A. Inverting (9) at a point t ∈ [0, 1] leads to
the same pointwise confidence band as stated in Equation (6). For simultaneous confidence
bands we need to replace the pointwise, and time-independent, critical value qα,n with a
time-adaptive critical value u(t) that allows for simultaneous inference across t ∈ [0, 1]. The
discussion of how to construct such critical value functions is provided in the next section.
Given such a u(t), the simultaneous confidence band around xTnew(t)β(t) is defined as

SCB1−α(t) =

[
xTnew(t)β̂(t)±

u(t)√
n

ĉCB(t, t)
1/2

]
. (10)

2.2.2 Constructing time-adaptive critical value functions

We adapt the approach of Liebl and Reimherr (2023) by focusing on piecewise constant
critical value functions instead of piecewise linear. This simplifies the theoretical derivation
and speeds up the practical computation, without losing significant flexibility. For a given
finite partition 0 = t0 < t1 < · · · < tM−1 < tM = 1 of the interval [0, 1], we therefore
consider critical value functions of the form

u(t) =
M−1∑
m=1

um1[tm−1,tm)(t) + uM1[tM−1,1](t),

where um > 0 denotes the critical value in the m-th interval [tm−1, tm). The number of
intervals M and their cutoffs can be chosen based on the desired trade-off between flexibility
and computational complexity, or motivated by time points of interest.

For the following, let Z ∼ GP(0, cSCB), and consider the random counting variable

Nu,Z([a, b]) = #{t ∈ [a, b] : Z(t) = u(t),Z ′(t) > 0},
which counts the locations where Z crosses the critical value function u in an upward-sloping
manner on the subdomain [a, b] ⊂ [0, 1]. If Nu,Z([a, b]) = 0, the only way Z could have
exceeded u was if Z started above of u at t = a. This logic, and an application of Boole’s
and Markov’s inequality, leads to the expected Euler characteristic inequality that allows
us to bound the one-sided simultaneous non-coverage probability:

P (∃ t ∈ [a, b] : Z(t) ≥ u(t)) = P (Z(a) ≥ u(a) or Nu,Z([a, b]) ≥ 1)

≤ P
(
Z(a) ≥ u(a)

)
+ P

(
Nu,Z([a, b]) ≥ 1

)
≤ P

(
Z(a) ≥ u(a)

)
+ E [Nu,Z([a, b])]

= E [φu([a, b])] , (11)
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where φu([a, b]) = 1{Z(a)≥u(a)}+Nu,Z([a, b]) denotes the Euler characteristic of the excursion
set {t ∈ [a, b] : Z(t) ≥ u(t)}.

The sharpness of inequality (11) has been analyzed under various assumptions on the
stochastic process Z. Piterbarg (1982) and Azäıs et al. (2002) studied smooth Gaussian
processes with stationary covariance functions (that is Cov(Z(t),Z(s)) = Cov(Z(0),Z(|t−
s|)) for all t, s ∈ [0, 1]) and without global singularities (that is Corr(Z(t),Z(s)) = 1 only
if t = s). Under additional technical conditions, they proved that for small significance
levels (α → 0) and thus for large critical values u = uα → ∞ the approximation error
satisfies |P

(
∃t ∈ [0, 1] : Z(t) ≥ u(t)

)
− E[φu,X(0)]| ≤ c1 exp

(
−c2u

2/2
)
for some constants

c1, c2 > 0. Extending this, Taylor et al. (2005) showed analogous results for non-stationary
covariance functions. In our setting with non-constant critical value functions u(t), the same
conclusions follow by taking ū = mint∈[0,1] u(t) as ū = ūα → ∞ for small α → 0. Note that
global singularities are permitted in (11), though they reduce approximation sharpness.

Explicit formulas for the expectation of an Euler characteristic are often called Kac-Rice
formulas, acknowledging the works of Kac (1943) and Rice (1945); see also Adler and Taylor
(2007). A function uα,n(t) that solves

E
[
φuα,n([0, 1])

]
= α/2

is a valid critical value function to the one-sided simultaneous inference problem, as it
bounds the one-sided simultaneous non-coverage probability (11) from above by α/2. For
any symmetric limit distribution, such as the Gaussian process Z, the critical value function
uα,n also bounds the two-sided simultaneous non-coverage probability

P (∃ t ∈ [0, 1] : Z(t) ̸∈ [−uα,n(t), uα,n(t)]) ≤ α.

Liebl and Reimherr (2023) derive Kac-Rice formulas for general elliptical processes. The
following corollary provides a simplified version of their Kac-Rice formula under our setup.

Corollary 2 (Based on Corollary 3.2 in Liebl and Reimherr, 2023.) Let τSCB denote the
roughness function corresponding to the covariance kernel of Z ∼ GP(0, cSCB). Additionally,
let [a, b] ⊂ [0, 1] and assume that u′(t) = 0 almost everywhere. Then

E [φu([a, b])] = Φ(−u(a)) +

∫ b

a

τSCB(t)

2π
exp

(
−1

2
u(t)2

)
dt, (12)

where Φ denotes the standard normal cumulative distribution function.

The only unknown parameter in (12) is the roughness function τSCB, which can be estimated
consistently uniformly over t ∈ [0, 1] by

τ̂SCB(t) =
(
∂s,t ĉSCB(s, t)|(s,t)=(t,t)

)1/2
, (13)

where ĉSCB(s, t) denotes a uniformly consistent estimator of the covariance kernel, such as the
plug-in estimator ĉSCB(s, t) = ĉCB(s, t)/

√
ĉCB(s, s)ĉCB(t, t); see Section 2.1.2 for the definition
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of ĉCB, and Appendix A for a proof of uniform consistency. This leads to the empirical
Kac-Rice equation

α

2
= Φ(−u1) +

M∑
m=1

exp(−u2m/2)
1

2π

∫ tm

tm−1

τ̂SCB(t)dt, (14)

where we replaced the arbitrary critical value function u(t) with the piecewise constant
function u(t) = um for t ∈ [tm−1, tm). Equation (14) has infinitely many solutions, which
means that we can choose (u1, . . . , uM ) such that additional constraints are satisfied. An
intuitive choice is to solve (14) such that the width of the resulting confidence band is
small, for example, by minimizing the squared width of the band

∫
u(t)2/n ĉCB(t, t)dt =∑M

m=1 u
2
m/n

∫ tm
tm−1

ĉCB(t, t)dt, subject to (14). Another approach is to choose each um, m =
1, . . . ,M , such that the significance level is distributed according to the share of the interval
length, that is

P (∃ t ∈ [tm−1, tm] : Z(t) ̸∈ [−um, um]) ≤ α (tm − tm−1),

where each um is determined by the local Kac-Rice equation

α

2
(tm − tm−1) = Φ(−um) + exp(−u2m/2)

1

2π

∫ tm

tm−1

τ̂SCB(t)dt.

The latter approach is what Liebl and Reimherr (2023) call fair, as it ensures that the
false positive rate is balanced across the intervals [tm−1, tm], m = 1, . . . ,M . As in the
case of pointwise confidence bands, we typically want to incorporate a finite sample correc-
tion to account for the asymptotically negligible, but practically relevant estimation errors
in ĉSCB(t, t). For this case, we derive alternative formulas to (12) and (14) for the Stu-
dent’s t type process Z(t)((n−K)/χ2

n−K)1/2, where χ2
n−K denotes a Chi-square distributed

random variable with n − K degrees of freedom (see Corollary 3). The distribution of
Z(t)((n−K)/χ2

n−K)1/2 is heavier tailed than that of Z(t), for every finite n > K, and
therefore leads to more conservative inference in finite sampling, which can act as a finite
sample correction. In order to incorporate these different cases into one algorithm, we ab-
stract from the specific distribution and scaling of the integral of the roughness function
in (14), and propose Algorithm 1, an algorithm that computes fair critical values um that
satisfy the global and local Kac-Rice equations. We regain (14) by setting F = Φ and
S(u) = exp(−u2/2)/2π.

2.2.3 Simultaneous Prediction Bands

To construct a simultaneous prediction band for Ynew(t), we need to consider the distribution
of the error term εnew(t). Extending the limit result from Equation (7) to the whole process,
we directly have that{

ĉPB(t, t)
−1/2

(
xTnew(t)β̂(t)− Ynew(t)

)
, t ∈ [0, 1]

}
d−→ Tν ,

as n → ∞, where ĉPB(t, t) is a consistent estimator of the conditional scaling covariance
σZ(t, t|xnew), and where Tν is a Student’s t-type distributed process with ν degrees of

9
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freedom, and correlation kernel cSPB(s, t) = σZ(s, t|xnew)/
√
σZ(s, s|xnew)σZ(t, t|xnew). In

line with the motivation in the section on pointwise prediction bands, we typically add a
finite sample correction to ĉPB(t, t), such as ĉPB(t, t) = ĉCB(t, t)/n+ σ̂Z(t, t|xnew). In this case,
we estimate cSPB by the consistent plug-in estimator ĉSPB(s, t) = ĉPB(s, t)/

√
ĉPB(s, s)ĉPB(t, t).

For the construction of σ̂Z , see Section 2.1.2. Given a valid critical value function u(t), the
simultaneous prediction band around Ynew(t) is defined as

SPB1−α(t) =
[
xTnew(t)β̂(t)± u(t) ĉPB(t, t)

1/2
]
. (15)

To construct u(t), we can use a similar approach as for simultaneous confidence bands. The
main difference is that we need to adapt the Kac-Rice formula (12) to the Student’s t-type
process Tν . The following corollary provides a simplified version of the Kac-Rice formula
under our setup.

Corollary 3 (Based on Corollary 3.3 in Liebl and Reimherr, 2023.) Let τSPB denote the
roughness function corresponding to the covariance kernel of the Student’s t-type distributed
process Tν with ν degrees of freedom. Additionally, let [a, b] ⊂ [0, 1] and assume that u′(t) = 0
almost everywhere. Then

E [φu([a, b])] = Ft(−u(a); ν) +

∫ b

a

τSPB(t)

2π

(
1 +

u(t)2

ν

)−ν/2

dt,

where Ft(−u(a); ν) denotes the cumulative distribution function of a Student’s t-distributed
random variable with ν degrees of freedom.

This gives us the empirical Kac-Rice equation for the Student’s t-distributed process

α

2
= Ft(−u1; ν) +

M∑
m=1

(
1 +

u2m
ν

)−ν/2
1

2π

∫ tm

tm−1

τ̂SPB(t)dt.

We obtain fair critical values using Algorithm 1 (setting F = Ft(·; ν) and S(u) = (1 +
u2/ν)−ν/2/2π). The uniformly consistent estimated roughness function τ̂SPB is defined using
the same approach as in (13), replacing ĉSCB with ĉSPB.

Algorithm 1: Fair critical value function selection (two-sided)

Input:
Significance level α ∈ (0, 1) and time points t0 = 0 < t1 < · · · < tM = 1
Cumulative distribution function F and integral scaling S : R+ → R
Estimated roughness function τ̂ : [0, 1] → R

for m = 1 to M do

Solve: F (−u⋆α,m) + S(u⋆α,m)
∫ tm
tm−1

τ̂(t)dt = α/2 (tm − tm−1)

return (u⋆α,1, . . . , u
⋆
α,M )

10
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3 Simulation Study

We assess the finite-sample properties of the proposed simultaneous prediction bands (SPB)
by means of a comprehensive simulation study. Throughout, we contrast the SPB with the
conformal inference approach of Diquigiovanni et al. (2022b) and Fontana et al. (2023).

3.1 Data-generating Process

We simulate a random sample from a concurrent functional linear regression model

Yi(t) = β0(t) +Xi(t)β1(t) + εi(t), i = 1, . . . , n,

with coefficient functions β0(t) = exp(−2t)/2 and β1(t) = t · sin(2πt). The predictor Xi(t)
is a randomly scaled cosine function with a vertical shift that is positive with probability
0.5 and otherwise negative; specifically, we set

Xi(t) = Bi + Si · cos (2πt) ,

with Bi ∼iid B, where B ∈ {−1, 1} with P(B = −1) = P(B = 1) = 0.5, and Si ∼iid

U [0.75, 1.25]. The error process εi(t) is drawn independently of a Student’s-t type of process
(as in Equation 2) for which we consider two different covariance structures and fixed degrees
of freedom ν. For both structures, the covariance is given by a Matérn kernel

C(s, t) = (1/3)2
(
21−γst/Γ(γst)

) (√
2γst |t− s|

)γst
Kγst

(√
2γst |t− s|

)
,

where Γ is the gamma function, Kγst is the modified Bessel function of the second kind, and
γst > 0 controls the roughness of the sample paths. For the first structure, we set γst = 3/2
for all s, t ∈ [0, 1], which leads to a stationary process and continuously differentiable sample
paths. For the second structure, we set γst = 2 +

√
max(s, t) · (1/4 − 2), which results in

a non-stationary process and sample paths that begin smooth in the sampling domain and
later become rough. A visualization of the outcomes Yi(t) induced by this setup is given in
Figure 1. To mimic empirical functional data, all curves are discretized on an equidistant
grid of 101 points.

3.2 Design

We examine eight simulation scenarios by varying three factors: the sample size (n), the
degrees of freedom (ν), and the type of covariance structure (γst):

n ∈ {30, 100}, ν ∈ {5, 15}, γst ∈ {Stationary,Non-Stationary},

with stationary meaning γst = 3/2, and non-stationary γst = 2 +
√

max(s, t) · (1/4− 2).

For each of the eight scenarios, we conduct 1 000 simulation runs. During every iteration,
we simulate a random sample {(Yi(·), Xi(·)) : i = 1, . . . , n} from the model, as well as
an independent new observation (Ynew(·), Xnew(·)). We then calculate the prediction and
confidence bands for the new observation Ynew(·) given Xnew(·), using the proposed method
and the conformal inference method. The bands are then evaluated based on several criteria.
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Figure 1: A random sample of Yi(t) from the simulation model, with ν = 5 degrees of
freedom. The left panel (a) shows data generated using the stationary (blue)
Matérn covariance structure, while the right panel (b) shows data generated using
the non-stationary (orange) Matérn covariance structure.

3.3 Evaluation Criteria

Let L(t) and U(t) denote the lower and upper bounds of a band at time t ∈ [0, 1]. We
consider three criteria to evaluate the performance of such bands.

3.3.1 Coverage

For confidence bands, we assess the simultaneous coverage by checking that for all t ∈ [0, 1] :
L(t) ≤ Xnew(t)

Tβn(t) ≤ U(t). For prediction bands, we verify that for all t ∈ [0, 1] : L(t) ≤
Ynew(t) ≤ U(t).

3.3.2 Maximum width

Since an infinitely-wide band would always cover the true function, we are interested in the
smallest bands that achieve a given coverage. We evaluate the width of a band using the
maximum width statistic maxt∈[0,1]|U(t)− L(t)|.

3.3.3 Band score

To assess the trade-off between the width of the band and its ability to cover the new ob-
servation Ynew(t), we use the band score, a functional version of the interval score (Gneiting
and Raftery, 2007). The band score is defined as

max
t∈[0,1]

|U(t)− L(t)|+ 2

α
max
t∈[0,1]

(L(t)− Ynew(t))1(Ynew(t) < L(t))

+
2

α
max
t∈[0,1]

(Ynew(t)− U(t))1(Ynew(t) > U(t)),

where α is the significance level. This metric penalizes bands with large maximum widths
when they cover the new observation and penalizes the distance between the band and
Ynew(t) when the band fails to cover it.

12
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3.4 Results

We compare the performance of our prediction bands with the conformal inference predic-
tion band for functional data of Diquigiovanni et al. (2022b); Fontana et al. (2023). The
conformal inference method was implemented using the R package conformalInference.fd
(Diquigiovanni et al., 2022a).

In Table 1, we show the simulation results for our 90%-prediction bands. The critical
value function is calculated using Algorithm 1 based on F = Ft(·; ν) and S(u) = (1 +
u2/ν)−ν/2/2π. Our approach and the conformal inference method achieve roughly the same
conservative empirical coverage in the small sample size case (n = 30) under both covariance
structures. In the larger sample size case (n = 100), our approach remains conservative,
while the conformal inference method approaches the nominal coverage more closely, with a
slight undercoverage in two cases. Although, our method is weakly more conservative, the
maximum width of our bands is substantially smaller in all scenarios but one. The same
trend is observed for the band score, where we achieve a better score in all but two cases.

In Table 2, we present the simulation results for our 90%-confidence bands. The critical
value function is calculated using Algorithm 1 based on F = Φ and S(u) = exp(−u2/2)/2π.
We do not report results for the conformal inference method, as they are not applicable
in the confidence bands case. While the empirical coverage is slightly conservative in most
cases, it is less conservative than in the prediction bands case.

Figure 2 shows an example of the 90%-prediction bands generated using the conformal
inference method and our method (Fair).

0 1/3 2/3 1

t

−2

0

2

(a) Stationary

0 1/3 2/3 1

t

(b) Non-stationary

Fair Conf. Inf. Ynew(t) Xnew(t)Tβ̂(t)

Figure 2: 90%-conditional prediction bands for the outcome Y given covariates Xnew(t).
The yellow line represents the corresponding observed outcomes Ynew(t). The
bands are constructed using our Fair method (blue) and the Conformal infer-
ence method (green). The dashed black line represents the predicted outcome
Xnew(t)

Tβ̂(t). In the left panel (a) the error process is generated using the sta-
tionary Matérn covariance structure, while the right panel (b) shows data gener-
ated using the non-stationary Matérn covariance structure. In both cases we set
ν = 15, and estimate the bands on the same n = 30 samples.
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Stationary

Coverage Maximum Width Band Score

n ν Fair Conf. Inf. Fair Conf. Inf. Fair Conf. Inf.

30 5 0.93 (0.25) 0.93 (0.26) 2.42 (0.50) 3.46 (0.88) 2.78 (2.05) 3.74 (1.62)

15 0.94 (0.23) 0.94 (0.24) 1.94 (0.24) 3.03 (0.52) 2.11 (1.00) 3.22 (0.97)

100 5 0.94 (0.24) 0.89 (0.31) 2.29 (0.27) 2.75 (0.26) 2.67 (2.10) 3.33 (2.45)

15 0.94 (0.23) 0.90 (0.30) 1.83 (0.13) 2.57 (0.20) 2.02 (1.23) 2.97 (1.61)

Non-Stationary

Coverage Maximum Width Band Score

n ν Fair Conf. Inf. Fair Conf. Inf. Fair Conf. Inf.

30 5 0.94 (0.24) 0.95 (0.23) 3.79 (0.81) 3.84 (1.02) 4.17 (2.24) 4.12 (1.79)

15 0.95 (0.21) 0.94 (0.23) 2.88 (0.36) 3.25 (0.53) 3.03 (0.95) 3.42 (0.98)

100 5 0.94 (0.24) 0.90 (0.30) 3.52 (0.47) 3.03 (0.27) 3.94 (2.43) 3.68 (2.89)

15 0.95 (0.21) 0.89 (0.31) 2.65 (0.21) 2.77 (0.20) 2.83 (1.19) 3.14 (1.48)

Table 1: Simulation results for the coverage, maximum width, and band score of our predic-
tion bands for α = 10% under a stationary (top table) and non-stationary (bottom
table) Matérn covariance structure. The results are reported for varying sample
sizes (n) and degrees of freedom (ν), and compared to the conformal inference
method. Means and standard deviations (in parentheses) are calculated over 1 000
simulation runs, and rounded to two decimal places.

Coverage Maximum Width Band Score

n ν Stat. Non-Stat. Stat. Non-Stat. Stat. Non-Stat.

30 5 0.93 (0.26) 0.92 (0.28) 0.59 (0.13) 0.78 (0.17) 0.66 (0.36) 0.85 (0.36)

15 0.92 (0.27) 0.91 (0.29) 0.48 (0.08) 0.63 (0.09) 0.53 (0.26) 0.69 (0.27)

100 5 0.93 (0.26) 0.94 (0.24) 0.31 (0.04) 0.40 (0.05) 0.34 (0.14) 0.42 (0.14)

15 0.92 (0.27) 0.92 (0.27) 0.25 (0.02) 0.32 (0.03) 0.29 (0.16) 0.36 (0.15)

Table 2: Simulation results for the coverage, maximum width, and band score of our Fair
confidence bands for α = 10% under a stationary (Stat.) and non-stationary
(Non-Stat.) Matérn covariance structure. The results are reported for varying
sample sizes (n) and degrees of freedom (ν). Means and standard deviations (in
parentheses) are calculated over 1 000 simulation runs, and rounded to two decimal
places.
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4 Application: Sprint Start Kinetics

Determining whether amputee sprinters gain a competitive advantage from prostheses is a
long-standing challenge in sports science. World Athletics Rule 6.3.4 requires evidence “on
the balance of probabilities” that a mechanical aid does not confer an overall competitive
advantage (World Athletics, 2020a,b). We illustrate our methodology on this question.

To judge “on the balance of probabilities,” one must compare an amputee sprinter’s
movement/force pattern to a probabilistically justified conditional range from analogous
non-amputee sprinters. We therefore apply our conditional simultaneous prediction bands
to sprint-start force trajectories.

4.1 Data

We use the Sprint Start Kinetics data of Willwacher et al. (2016) comprising 154 non-
amputee sprinters and 7 amputee sprinters. The functional response is the vertical force
at the front starting block during the push-off phase, scaled to 0-100% of push-off and
discretized at 101 points. Scalar predictors are age, height, mass, sex, and push-time. The
original data are misaligned due to inter-individual differences in the timing of peak force.
To correct for this, we align the trajectories to the subject-specific peak, truncate post-peak,
and then linearly inter- and extrapolate onto the original time grid (see Figure 3).
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Figure 3: Front vertical force trajectories for amputee (red) and non-amputee (gray) sprint-
ers, realigned at peak and truncated thereafter.

4.2 Analysis Setup

We fit a function-on-scalar concurrent regression using only non-amputee sprinters, and then
construct 90%-conditional simultaneous prediction bands for the non-amputee sprinters
with the same covariates as each amputee. As a sanity check, for each amputee we also
select a nearest-neighbor non-amputee with similar covariates.
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4.3 Findings

At the 90% level, 5 out of 7 amputee trajectories exhibit at least one exceedance of their
conditional band, with exceedances concentrated in the middle third of push-off, whereas,
with one exception, matched non-amputee counterparts lie entirely within their bands. For
reference, conformal bands flag 3 out of 7 amputees. Figure 4 illustrates the analysis result
for a single amputee. The trajectory of this individual exceeds the band in the middle third
under our method, but not under the conformal method. These results provide statistically
grounded and conditional evidence relevant to Rule 6.3.4 by deciding if and localizing where
amputee and non-amputee force patterns differ during the sprint start.
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Yamputee(t)

Ynearest-neighbor(t)

Xamputee(t)Tβ̂(t)

Figure 4: 90%-conditional prediction bands for the front vertical force given covariates
Xamputee(t) of an amputee. The yellow line represents the corresponding ob-
served outcomes Yamputee(t) of the amputee. The bands are constructed using our
Fair method (blue), and the Conformal Inference method (green). The dashed
black line represents the predicted outcome Xamputee(t)

Tβ̂(t). The orange line is
the trajectory Ynearest-neighbor(t) of a matched non-amputee sprinter with similar
covariates.

5 Conclusion

We developed simultaneous confidence and prediction bands (SCB/SPB) for concurrent
functional linear regression that enable conditional, locally interpretable inference across
the domain. On the theory side, we establish a functional central limit theorem for pre-
dicted conditional mean process (Theorem 1) and combine it with piecewise-constant critical
values obtained via an empirical Kac-Rice formula. This delivers bands that adapt to local
uncertainty and support conditional conclusions rather than purely marginal guarantees.
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In our simulations, across stationary and non-stationary error structures and n ∈
{30, 100}, our proposed SPBs demonstrated improved performance compared to confor-
mal prediction bands. Our SCBs empirical coverage is close to nominal levels and slightly
less conservative than the SPBs, as expected. See Tables 1 and 1 for details.

The sprint-start case study illustrates practical value: at the 90% level, conditional SPBs
reveal localized exceedances for several amputee trajectories concentrated in the middle
third of push-off, whereas matched non-amputee trajectories largely remain within band.
This provides statistically grounded and conditional evidence relevant to assessments under
Rule 6.3.4.

Our analysis relies on a linear functional regression model with homoskedastic errors,
random sampling, C2 smoothness of underlying functions with finite moment conditions,
a full-rank condition ensuring identification, and positive roughness preventing degenerate
correlation; SPBs additionally assume a Student-t-type error process to accommodate heavy
tails. Importantly, our results extend to heteroskedastic settings with appropriate covariance
estimation.

Several extensions merit investigation. While our framework assumes i.i.d. sampling,
the theoretical foundation supports extension to weakly dependent functional time series
via mixing conditions. The method could accommodate sparsely observed functional data
through pre-smoothing or basis expansions. Extensions to higher-dimensional domains (e.g.,
[0, 1]2 for image data) represent natural generalizations. Finally, alternative critical value
optimizations, including minimum-width strategies and smoother parametric forms beyond
piecewise-constant designs, could further enhance local adaptation while maintaining com-
putational tractability.
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Appendix A. Proofs

In the following, we provide the proofs of the theoretical results presented in the main text.
We start by introducing some definitions. In Section A.1, we list the assumptions under
which we develop our theory. In Section A.2, we present some auxiliary lemmas that are
used in the main proofs. Section A.3 contains the proofs of the main results.

Definition 4 (Roughness Parameter) Let c : [0, 1]2 → R be a differentiable covariance
kernel. The roughness parameter τc : [0, 1] → R associated with c, is defined as

τc(t) =

(
∂2

∂s∂t

c(s, t)√
c(s, s)c(t, t)

∣∣∣∣
(s,t)=(t,t)

)1/2

.
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Definition 5 (Differential Operator) Let f(t) : [0, 1] → K and g(s, t) : [0, 1]2 → K be
differentiable functions, where K is a Banach space (in this text, R, RK or RK×K). The
differential operator D(d) is defined as

D(d)f(t) =
∂d

(∂t)d
f(t), d ∈ {0, 1, 2},

and we sometimes write f (d)(t) = D(d)f(t). Note that f (0) = D(0)f = f . The partial
differential operator D(d,p) is defined as

D(d,p)g(s, t) =
∂d

(∂s)d
∂p

(∂t)p
g(s, t), d, p ∈ {0, 1},

and we sometimes write g(d,p)(s, t) = D(d,p)g(s, t). Note that g(0,0) = D(0,0)g = g.

A.1 Assumptions

The following list summarizes the assumptions under which we develop our uniform con-
fidence and prediction bands. The confidence bands require Assumption 1 - 6, while the
prediction bands require the additional Assumption 7. We discuss the assumptions in Sec-
tion A.1.1.

1 Linear model:
Y (t) = XT(t)β(t) + ε(t), t ∈ [0, 1],

where X = {X(t) ∈ RK : t ∈ [0, 1]} is a K-dimensional vector-valued random function
X(t) = (X1(t), . . . , XK(t))T with intercept X1(t) = 1, for all t ∈ [0, 1]. Further,
ε = {ε(t) : t ∈ [0, 1]} denotes the unobserved error function with E[ε(t)|X(t)] = 0 for
all t ∈ [0, 1].

2 Homoskedasticity: The covariance kernel of the error term ε is assumed to not
depend on the predictor functions X:

E[ε(s)ε(t)|X] = E[ε(s)ε(t)] = σε(s, t).

3 Random sampling: {(Yi, Xi)|i = 1, . . . , n} is an iid sample from (Y,X).

4 Smoothness and moments:

Define
(G1(t), . . . , GK(t), GK+1(t))

T = (X1(t), . . . , XK(t), ε(t))T.

For all j, k = 1, . . . ,K + 1,

(a) The random functions Gj and their expectations are twice continuously differ-
entiable almost surely, that is Gj ∈ C2[0, 1] and E[Gj ] ∈ C2[0, 1] almost surely.

(b) There exists a finite constant C < ∞ such that

E

[
sup
t∈[0,1]

∣∣∣Dd (Gk(t)Gj(t))
∣∣∣2] ≤ C < ∞

for all d ∈ {0, 1, 2}, where Dd is the differential operator from Definition 5.
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(c) The regression coefficient functions are twice continuously differentiable almost
surely, that is βj ∈ C2[0, 1] almost surely.

5 Rank condition: There exists a positive constant δ > 0, such that for all s, t ∈ [0, 1]
with |s− t| < δ, ΣX(s, t) = E[X(s)XT(t)] has full rank.

6 Roughness condition:

Let xnew : [0, 1] → RK ∈ C1([0, 1],RK) be a continuously differentiable deterministic
function with xnew(t) ̸= 0 for all t ∈ [0, 1]. Define σxnew(s, t) = xTnew(s)Σ

−1
X (s, t)xnew(t).

Then, for all t ∈ [0, 1]: τσ(t) > 0 for σ ∈ {σε, σxnew}, where τσ is the roughness
parameter as defined in Definition 4, and σε is the covariance kernel of the error term
ε, as defined in Assumption 2.

7 Error distribution (required only for prediction bands): The error ε is a Student’s

t type of process with ν0 > 2 degrees of freedom defined as ε
D
= Z

√
ν0
χ2
ν0

, where χ2
ν0

is a real-valued Chi-squared distributed random variable with ν0 degrees of freedom,
Z = {Z(t), t ∈ [0, 1]} is a mean zero Gaussian process with continuous covariance
kernel E[Z(t)Z(s)] = σZ(s, t), and where Z and χ2

ν0 are independent. The kernel
then has the following structure (relying on the homoskedasticity assumption from
Assumption 2):

σε(s, t) = E[ε(s)ε(t)|X] = E[ε(s)ε(t)] = E[Z(s)Z(t)]E
[
ν0
χ2
ν0

]
= σZ(s, t)

ν0
ν0 − 2

.

A.1.1 Discussion

Assumption 1 is a standard linear model assumption with mean-independent error terms.
Assumption 2 supposes homoskedastic error terms, which makes it easier to present and
derive formulas for all objects that depend on the covariance kernel of the error term.
Importantly, our results also hold in the heteroskedastic case, in which only the estimation
of the error kernel has to be adjusted. Assumption 3 requires an iid random sampling
scheme. However, our results also hold for weakly dependent stationary functional time
series. Assumption 4 (a) and (b) impose smoothness conditions on the sample paths, which
are required for the uniform convergence results. The typical applications considered in
functional data analysis are concerned with relatively smooth functions and thus fit into our
theoretical framework. Assumption 4 (c) imposes a smoothness condition on the population
coefficient function, which ensures point-wise identification and uniform consistency of its
estimator. Assumption 5 is the functional analog of the “no multicollinearity” condition: it
ensures identification of β(t) and its derivatives via the inverse Σ−1

X (s, t) near the diagonal,
which is exactly the region entering the variance and roughness calculations. Assumption 6
rules out flat spots (degenerate local correlation) in the covariance kernels σε and σxnew .
Intuitively, it ensures that correlation decays quadratically away from s = t, which is exactly
what controls the excursion probabilities underlying simultaneous bands. The condition is
mild and holds for common kernels (for instance, squared-exponential with length ℓ gives
τ = 1/ℓ; Matérn with smoothness ν > 1 yields τ > 0); it excludes non-twice-differentiable
kernels such as Brownian motion. Assumption 7 allows for heavy-tailed error distributions
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in the prediction band case via a common random scale, while preserving the correlation
structure of Z. Our bands are therefore able to adapt to heavy-tails (low ν0) as well as
Gaussian tails (ν0 → ∞). To ensure finite second moments we require ν0 > 2.

A.2 Lemmas

In Assumption 4, we defined (G1(t), . . . , GK(t), GK+1(t))
T = (X1(t), . . . , XK(t), ε(t))T. Re-

call the differential operator from Definition 5, and let G
(d)
jk (t) = DdGj(t)Gk(t). Addition-

ally, define its “de-meaned” version:

Ġ
(d)
jk (t) = Dd (Gj(t)Gk(t))− E

[
Dd (Gj(t)Gk(t))

]
, (16)

for j, k = 1, . . . ,K + 1 and d ∈ {0, 1, 2}.

Lemma 6 (Stochastic Lipschitz Continuity) Under Assumption 4 (a) and (b), we have
for all j, k = 1, . . . ,K + 1, and for all d ∈ {0, 1}

max
{∣∣∣G(d)

k (t)−G
(d)
k (s)

∣∣∣ , ∣∣∣Ġ(d)
jk (t)− Ġ

(d)
jk (s)

∣∣∣} ≤ Ajkd ϕjkd(|t− s|),

for all s, t ∈ [0, 1], where ϕjkd is a deterministic, non-decreasing continuous function on
[0, 1] with ϕjkd(0) = 0; and Ajkd is a real-valued random variable with E[A2

jkd] < ∞.

Proof Without loss of generality, let 0 ≤ s < t ≤ 1. Under Assumption 4 (a) and (b),

Ġ
(d)
jk is continuous over [0, 1] for all d ∈ {0, 1} and thus, by the Mean Value Theorem, there

exists a ξ ∈ (s, t) such that

Ġ
(d)
jk (t)− Ġ

(d)
jk (s) = Ġ

(d+1)
jk (ξ)(t− s).

This implies that (
Ġ

(d)
jk (t)− Ġ

(d)
jk (s)

)2
≤ sup

ξ∈(s,t)

(
Ġ

(d+1)
jk (ξ)

)2
(t− s)2

≤ sup
ξ∈[0,1]

(
Ġ

(d+1)
jk (ξ)

)2
(t− s)2.

Taking the expectation and applying Assumption 4 (b) we have that

E
[(

Ġ
(d)
jk (t)− Ġ

(d)
jk (s)

)2]
≤ E

[
sup

ξ∈[0,1]

∣∣∣Ġ(d+1)
jk (ξ)

∣∣∣2] (t− s)2

= E

[
sup

ξ∈[0,1]

∣∣∣Dd+1Gj(ξ)Gk(ξ)− E
[
Dd+1Gj(ξ)Gk(ξ)

]∣∣∣2] (t− s)2

≤ 4E

[
sup

ξ∈[0,1]

∣∣∣Dd+1Gj(ξ)Gk(ξ)
∣∣∣2] (t− s)2

≤ 4C (t− s)2 =: f(|t− s|) (17)
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for all s, t ∈ [0, 1], where C < ∞ is a non-zero, finite constant. Note that f is a deterministic
non-negative function on [0, 1] which is non-decreasing in a neighborhood of 0. Moreover,
it is easy to show that

∫ 1

0
x−3/2f1/2(x)dx = 2

√
4C < ∞. (18)

The result for
∣∣∣Ġ(d)

jk (t)− Ġ
(d)
jk (s)

∣∣∣ now follows directly from Equations (17) and (18) by

applying Theorem 2.3 in Hahn (1977) for the case of r = 2 moments. For the case of∣∣∣G(d)
k (t)−G

(d)
k (s)

∣∣∣, notice that we can apply the same proof technique such that

E
[(

G
(d)
k (t)−G

(d)
k (s)

)2]
≤ E

[
sup

ξ∈[0,1]

∣∣∣Dd+1Gk(ξ)
∣∣∣2] (t− s)2

≤ C (t− s)2 ≤ f(|t− s|),

where the last inequality follows by Assumption 4 (b).

For the next Lemma, let {Ġ(d)
jki(t) : i = 1, . . . , n} be an iid sample of Ġ

(d)
jk (t), as defined in

(16). Define the corresponding sample mean as

B
(d)
jkn(t) =

1

n

n∑
i=1

Ġ
(d)
jki(t) =

1

n

n∑
i=1

Dd (Gji(t)Gki(t))− E
[
Dd (Gj(t)Gk(t))

]
.

Lemma 7 (Uniform consistency, 1-dimensional) Under Assumptions 4 (a) and (b),
it holds that, for all j, k = 1, . . . ,K + 1, and for all d ∈ {0, 1},

sup
t∈[0,1]

∣∣∣B(d)
jkn(t)

∣∣∣ a.s.→ 0, as n → ∞.

Proof We first consider pointwise convergence for each t ∈ [0, 1] and then expand this to

uniform convergence. As the Ġ
(d)
jki(t) are iid, by Kolmogorov’s strong law of large numbers

(SLLN),

B
(d)
jkn(t)

a.s.→ 0, as n → ∞, (19)

pointwise for each t ∈ [0, 1], each j, k = 1, . . . ,K+1, and each d ∈ {0, 1}. To expand this to

uniform convergence, we need to show that B
(d)
jkn(t) is strongly stochastically equicontinuous.

By Lemma 6, we have that for all i = 1, . . . , n

|Ġ(d)
jki(t)− Ġ

(d)
jki(s)| ≤ Ajkdiϕjkd(|t− s|) for all s, t ∈ [0, 1], (20)
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where the {Ajkdi : i = 1, . . . , n} are iid as Ajkd, with E[A2
jkd] < ∞. This allows us to derive

the following approximation for all s, t ∈ [0, 1]:∣∣∣B(d)
jkn(t)−B

(d)
jkn(s)

∣∣∣ = ∣∣∣∣∣ 1n
n∑

i=1

(
Ġ

(d)
jki(t)− Ġ

(d)
jki(s)

)∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣Ġ(d)
jki(t)− Ġ

(d)
jki(s)

∣∣∣
≤ 1

n

n∑
i=1

Ajkdiϕjkd(|t− s|), (21)

where the last inequality follows by (20). By the strong law of large numbers,

1

n

n∑
i=1

Ajkdi
a.s.→ E (Ajkd) < ∞ as n → ∞. (22)

The results of (21) and (22) imply, by Theorem 22.10 in Davidson (2021), that B
(d)
jkn is

strongly stochastic equicontinuous for every j, k = 1, . . . ,K+1, and for all d ∈ {0, 1}. This,
together with the pointwise consistency in (19), implies, by Theorem 22.8 in Davidson
(2021), that

sup
t∈[0,1]

∣∣∣B(d)
jkn(t)

∣∣∣ a.s.→ 0, as n → ∞

for each j, k = 1, . . . ,K + 1, and for all d ∈ {0, 1}.

For the next lemma, we need to extend our notation further. Define

G
(d,p)
jk (s, t) = D(d,p) (Gj(s)Gk(t)) ,

for j, k = 1, . . . ,K +1, and for d, p ∈ {0, 1}, employing the differential operator D(d,p) from
Definition 5. This leads to the following four cases:

G
(d,p)
jk (s, t) =

 Gj(s)Gk(t) Gj(s)
∂

∂t
Gk(t)

∂

∂s
Gj(s)Gk(t)

∂

∂s
Gj(s)

∂

∂t
Gk(t)


(d,p)

.

As before, we define the “de-meaned” version of G
(d,p)
jk as

Ġ
(d,p)
jk (s, t) = D(d,p) (Gj(s)Gk(t))− E

[
D(d,p)Gj(s)Gk(t)

]
= G

(d,p)
jk (s, t)− E

[
G

(d,p)
jk (s, t)

]
.

Let Ġ
(d,p)
jki (s, t), for i = 1, . . . , n, denote iid copies of Ġ

(d,p)
jk (s, t) and define the corresponding

sample mean as

B
(d,p)
jkn (s, t) =

1

n

n∑
i=1

Ġ
(d,p)
jki (s, t) =

1

n

n∑
i=1

D(d,p) (Gij(s)Gik(t))− E
[
D(d,p) (Gj(s)Gk(t))

]
.

22



Adaptive SPBs for Concurrent Functional Linear Regression

Lemma 8 (Uniform consistency, 2-dimensional) Under Assumptions 4 (a) and (b),
it holds that, for all j, k = 1, . . . ,K + 1 and for all d, p ∈ {0, 1},

sup
s,t∈[0,1]

∣∣∣B(d,p)
jkn (s, t)

∣∣∣ a.s.→ 0, as n → ∞.

Proof Note that, by the SLLN,

B
(d,p)
jkn (s, t)

a.s.→ E
[
Ġ

(d,p)
jk (s, t)

]
= 0, as n → ∞, (23)

pointwise for each s, t ∈ [0, 1], for all j, k = 1, . . . ,K + 1, and for all d, p ∈ {0, 1}. Next,

we need to show that B
(d,p)
jkn (s, t) is strongly stochastically equicontinuous for every j, k =

1, . . . ,K + 1 and for all d, p ∈ {0, 1}. For this, let s, t, u, v ∈ [0, 1], such that (without loss
of generality) s < u and t < v. Then,

∣∣∣∣B(d,p)
jkn (s, t)−B

(d,p)
jkn (u, v)

∣∣∣∣ = ∣∣∣∣ 1n
n∑

i=1

(
Ġ

(d,p)
ijk (s, t)− Ġ

(d,p)
ijk (u, v)

) ∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣Ġ(d,p)
ijk (s, t)− Ġ

(d,p)
ijk (u, v)

∣∣∣
=

1

n

n∑
i=1

∣∣∣G(d,p)
ijk (s, t)− E

[
G

(d,p)
jk (s, t)

]
−
(
G

(d,p)
ijk (u, v)− E

[
G

(d,p)
jk (u, v)

])∣∣∣
≤ 1

n

n∑
i=1

∣∣∣G(d,p)
ijk (s, t)−G

(d,p)
ijk (u, v)

∣∣∣+ 1

n

n∑
i=1

∣∣∣E [G(d,p)
jk (s, t)

]
− E

[
G

(d,p)
jk (u, v)

]∣∣∣
≤ 1

n

n∑
i=1

∣∣∣G(d,p)
ijk (s, t)−G

(d,p)
ijk (u, v)

∣∣∣+ E
∣∣∣G(d,p)

jk (s, t)−G
(d,p)
jk (u, v)

∣∣∣ =: (∗)

Now, notice that

G
(d,p)
jk (s, t)−G

(d,p)
jk (u, v) = (G

(d)
j (s)−G

(d)
j (u))G

(p)
k (t) + (G

(p)
k (t)−G

(p)
k (v))G

(d)
j (u),

and thus,

(∗) ≤
1

n

n∑
i=1

∣∣∣G(d)
ji (s)−G

(d)
ji (u)

∣∣∣ ∣∣∣G(p)
ki (t)

∣∣∣︸ ︷︷ ︸
I1,1

+
1

n

n∑
i=1

∣∣∣G(p)
ki (t)−G

(p)
ki (v)

∣∣∣ ∣∣∣G(d)
ji (u)

∣∣∣︸ ︷︷ ︸
I1,2

+ E
(∣∣∣G(d)

j (s)−G
(d)
j (u)

∣∣∣ ∣∣∣G(p)
k (t)

∣∣∣)︸ ︷︷ ︸
I2,1

+E
(∣∣∣G(p)

k (t)−G
(p)
k (v)

∣∣∣ ∣∣∣G(d)
j (u)

∣∣∣)︸ ︷︷ ︸
I2,2

.
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Let us focus on I1,1 first. By the Cauchy-Schwarz inequality, and Lemma 6, we have

I1,1 ≤
(
1

n

n∑
i=1

∣∣∣G(d)
ji (s)−G

(d)
ji (u)

∣∣∣2)1/2(
1

n

n∑
i=1

∣∣∣G(p)
ki (t)

∣∣∣2)1/2

≤
(
1

n

n∑
i=1

∣∣∣G(d)
ji (s)−G

(d)
ji (u)

∣∣∣2)1/2(
1

n

n∑
i=1

sup
t∈[0,1]

∣∣∣G(p)
ki (t)

∣∣∣2)1/2

≤
(
1

n

n∑
i=1

A2
jdiϕ

2
jd(|s− u|)

)1/2(
1

n

n∑
i=1

sup
t∈[0,1]

∣∣∣G(p)
ki (t)

∣∣∣2)1/2

= ϕjd(|s− u|)
(
1

n

n∑
i=1

A2
jdi

)1/2(
1

n

n∑
i=1

sup
t∈[0,1]

∣∣∣G(p)
ki (t)

∣∣∣2)1/2

.︸ ︷︷ ︸
=:F

(d,p)
n

Notice that F
(d,p)
n does not depend on the choice of s, u, t, v. Hence, doing the same for I1,2,

and using the ℓ1 − ℓ2 norm inequality, and that ϕjd is non-decreasing, we get

I1,1 + I1,2 ≤ F (d,p)
n (ϕjd(|s− u|) + ϕkd(|t− v|))

≤ F (d,p)
n 2ϕjd(|s− u|+ |t− v|)

≤ F (d,p)
n 2ϕjd(2

√
|s− u|2 + |t− v|2).

Next, we focus on I2,1 and I2,2. By the Cauchy-Schwarz inequality, we have

E
(∣∣∣G(d)

j (s)−G
(d)
j (u)

∣∣∣ ∣∣∣G(p)
k (t)

∣∣∣)
≤ E

(∣∣∣G(d)
j (s)−G

(d)
j (u)

∣∣∣2)1/2

E
(∣∣∣G(p)

k (t)
∣∣∣2)1/2

≤ E
(∣∣∣G(d)

j (s)−G
(d)
j (u)

∣∣∣2)1/2

E

∣∣∣∣∣ supt∈[0,1]
G

(p)
k (t)

∣∣∣∣∣
2
1/2

≤ E
(
A2

jdϕjd(|s− u|)2
)1/2 E

∣∣∣∣∣ supt∈[0,1]
G

(p)
k (t)

∣∣∣∣∣
2
1/2

= ϕjd(|s− u|)E
(
A2

jd

)1/2 E
∣∣∣∣∣ supt∈[0,1]

G
(p)
k (t)

∣∣∣∣∣
2
1/2

.

︸ ︷︷ ︸
=:F (d,p)

Using the same arguments as above, we see

I2,1 + I2,2 ≤ F (d,p)2ϕjd(2
√

|s− u|2 + |t− v|2).
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Now let h(x) = 2ϕjd(2x), and notice that h(x) ↓ 0 as x ↓ 0, since ϕjd is continuous and
ϕjd(0) = 0. Thus, we have

I1,1 + I1,2 + I2,1 + I2,2 ≤ (F (d,p)
n + F (d,p))h(

√
|s− u|2 + |t− v|2). (24)

By the SLLN and the continuous mapping theorem, we know that

F (d,p)
n + F (d,p) a.s.→ 2F (d,p) = 2E

(
A2

jd

)1/2 E
∣∣∣∣∣ supt∈[0,1]

G
(p)
k (t)

∣∣∣∣∣
2
1/2

< ∞, (25)

where finiteness holds by Lemma 6 and Assumption 4 (b). Results (24) and (25) imply,

by Theorem 22.10 in Davidson (2021), that B
(d,p)
jkn is strongly stochastic equicontinuous

for every j, k = 1, . . . ,K + 1, and for all d, p ∈ {0, 1}. This, together with the pointwise
consistency in (23), implies, by Theorem 22.8 in Davidson (2021), that

sup
s,t∈[0,1]

∣∣∣B(d,p)
jkn (s, t)

∣∣∣ a.s.→ 0, as n → ∞

for each j, k = 1, . . . ,K + 1, and for all d, p ∈ {0, 1}.

Lemma 9 (Roughness Functions) Under Assumptions 2, 6, and 7, we find that

(a) τSCB = τc, with c(s, t) = σε(s, t)σxnew(s, t), and

(b) τSPB = τc, with c(s, t) = σε(s, t).

Proof (a) τSCB is defined as the roughness function corresponding to the covariance kernel
σCB. Under homoskedasticity (Assumption 2), we have that σCB(s, t) = σε(s, t)σxnew(s, t).

(b) τSPB is defined as the roughness function corresponding to the covariance kernel σPB.
Under homoskedasticity (Assumption 2) and the assumption on the error process in the
prediction case (Assumption 7), we have that σPB(s, t) = σε(s, t)(ν − 2)/ν. However, since
the correlation function is invariant to constant scalings, we can ignore the factor (ν−2)/ν.

A.3 Theorems

We first recall the notation of the paper. The sample counterpart of ΣX is defined as

Σ̂X(s, t) =
1

n

n∑
i=1

Xi(s)X
T
i (t),

and the sample covariance of the error term is defined as

σ̂ε(s, t) =
1

n

n∑
i=1

ei(s)ei(t),
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where ei(t) = Yi(t)−XT
i (t)β̂(t) denotes the OLS-residual. The sample counterpart of σxnew

is defined as
σ̂xnew(s, t) = xTnew(s)Σ̂X(s, t)−1xnew(t).

In subsequent theorems, we will follow Definition 5 and denote the first derivative of a
function using the superscript d, with d = 0 indicating the function itself and d = 1 indi-
cating the first derivative. For the partial derivative, we will use the superscript (d, p), with
(d, p) = (0, 0) indicating the function itself, (d, p) = (1, 0) indicating the partial derivative in
the first argument, (d, p) = (0, 1) indicating the partial derivative in the second argument,
and (d, p) = (1, 1) indicating the partial derivative in both the first and second argument,
respectively.

Theorem 10 (Uniform Consistency) Under Assumptions 1-6, we have that as n → ∞,
for d, p ∈ {0, 1}:

(a) supt∈[0,1] ∥Σ̂(d)
X (t, t)− Σ

(d)
X (t, t)∥ a.s.→ 0,

(b) sups,t∈[0,1] ∥Σ̂(d,p)
X (s, t)− Σ

(d,p)
X (s, t)∥ a.s.→ 0,

(c) supt∈[0,1] ∥Σ̂−1(d)

X (t, t)− Σ−1(d)

X (t, t)∥ a.s.→ 0,

(d) sups,t∈[0,1],|s−t|<δ ∥Σ̂−1(d,p)

X (s, t)− Σ−1(d,p)

X (s, t)∥ a.s.→ 0,

(e) supt∈[0,1] ∥β̂(d)(t)− β(d)(t)∥ a.s.→ 0,

(f) supt∈[0,1] |σ̂(d,p)
ε (s, t)− σ

(d,p)
ε (s, t)| a.s.→ 0,

(g) supt∈[0,1] |σ̂(d,p)
xnew (s, t)− σ

(d,p)
xnew (s, t)| a.s.→ 0.

Proof (a) Recall, that component-wise univariate almost sure convergence implies al-
most sure convergence of the vectors and matrices built from these components. Pick any
d ∈ {0, 1}. Using this, together with the continuous mapping theorem for function spaces
(see van der Vaart, 1998, p. 259, Theorem 18.11), the desired result follows directly from
Lemma 7:

sup
t∈[0,1]

∣∣∣Σ̂(d)
X (t, t)− Σ

(d)
X (t, t)

∣∣∣
= sup

t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

DdXi(t)X
T
i (t)− E

[
DdX(t)XT(t)

]∣∣∣∣∣ a.s.→ 0
(K×K)

.

(b) Pick any d, p ∈ {0, 1}. Using the same arguments as above, the desired result follows
directly from Lemma 8:

sup
s,t∈[0,1]

∣∣∣Σ̂(d,p)
X (s, t)− Σ

(d,p)
X (s, t)

∣∣∣
= sup

s,t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

X
(d)
i (s)X

(p)
i (t)T − E

[
X(d)(s)X(p)(t)T

]∣∣∣∣∣ a.s.→ 0
(K×K)

.
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(c) For the case d = 0, the claim follows directly from the continuous mapping theorem for
function spaces (see van der Vaart, 1998, p. 259, Theorem 18.11), Theorem 10 (a), and the
rank condition in Assumption 5:

sup
t∈[0,1]

∣∣∣Σ̂−1
X (t, t)− Σ−1

X (t, t)
∣∣∣ a.s.→ 0

(K×K)
. (26)

For the first derivative (d = 1), matrix calculus yields

D(1) Σ̂−1
X (t, t) = −Σ̂−1

X (t, t)
(
D(1) Σ̂X(t, t)

)
Σ̂−1
X (t, t).

Thus, by the convergence results of Theorem 10 (a) and Equation (26), and an application
of the continuous mapping theorem for function spaces, we have

sup
t∈[0,1]

∣∣∣Σ̂−1
X (t, t)

(
D(1) Σ̂X(t, t)

)
Σ̂−1
X (t, t)− Σ−1

X (t, t)
(
D(1)ΣX(t, t)

)
Σ−1
X (t, t)

∣∣∣ a.s.→ 0
(K×K)

.

And since D(1)Σ−1
X (t, t) = −Σ−1

X (t, t)
(
D(1)ΣX(t, t)

)
Σ−1
X (t, t), we get the desired result:

sup
t∈[0,1]

∣∣∣D(1) Σ̂−1
X (t, t)−D(1)Σ−1

X (t, t)
∣∣∣ a.s.→ 0

(K×K)
.

(d) For the case (d, p) = (0, 0), the claim follows directly from the continuous mapping the-
orem for function spaces (see van der Vaart, 1998, p. 259, Theorem 18.11), Theorem 10 (b),
and the rank condition in Assumption 5:

sup
s,t∈[0,1]
|s−t|<δ

∣∣∣Σ̂−1
X (s, t)− Σ−1

X (s, t)
∣∣∣ a.s.→ 0

(K×K)
. (27)

Consider now the case (d, p) = (0, 1). Matrix calculus yields

D(0,1) Σ̂−1
X (s, t) = −Σ̂−1

X (s, t)
(
D(0,1) Σ̂X(s, t)

)
Σ̂−1
X (s, t).

Thus, by the convergence results of Theorem 10 (b) and Equation (27), and an application
of the continuous mapping theorem for function spaces, we have

sup
s,t∈[0,1]
|s−t|<δ

∣∣∣Σ̂−1
X (s, t)

(
D(0,1) Σ̂X(s, t)

)
Σ̂−1
X (s, t)− Σ−1

X (s, t)
(
D(0,1)ΣX(s, t)

)
Σ−1
X (s, t)

∣∣∣
a.s.→ 0

(K×K)
.

And since D(0,1)Σ−1
X (s, t) = −Σ−1

X (s, t)
(
D(0,1)ΣX(s, t)

)
Σ−1
X (s, t), we get the desired result:

sup
s,t∈[0,1]
|s−t|<δ

∣∣∣D(0,1) Σ̂−1
X (s, t)−D(0,1)Σ−1

X (s, t)
∣∣∣ a.s.→ 0

(K×K)
.
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Now, for the last case (d, p) = (1, 1), the product rule for matrix derivatives yields

D(1,1) Σ̂−1
X (s, t)

= D(1,0)D(0,1) Σ̂−1
X (s, t)

= D(1,0)
(
−Σ̂−1

X (s, t)
(
D(0,1) Σ̂X(s, t)

)
Σ̂−1
X (s, t)

)
=
(
Σ̂−1
X (s, t)

(
D(1,0) Σ̂X(s, t)

)
Σ̂−1
X (s, t)

(
D(0,1) Σ̂X(s, t)

)
Σ̂−1
X (s, t)

+ Σ̂−1
X (s, t)

(
D(1,1) Σ̂X(s, t)

)
Σ̂−1
X (s, t)

+ Σ̂−1
X (s, t)

(
D(0,1) Σ̂X(s, t)

)
Σ̂−1
X (s, t)

(
D(1,0) Σ̂X(s, t)

)
Σ̂−1
X (s, t)

)
.

Hence, employing the same arguments as above, using the convergence results of Theo-
rem 10 (b), as well as Equation (27), and the continuous mapping theorem for function
spaces, we get the desired result:

sup
s,t∈[0,1]
|s−t|<δ

∣∣∣D(1,1) Σ̂−1
X (s, t)−D(1,1)Σ−1

X (s, t)
∣∣∣ a.s.→ 0

(K×K)
.

(e) Under the linearity assumption (Assumption 1), we can express the estimation error of
the OLS estimator as∣∣∣β̂(t)− β(t)

∣∣∣ = ∣∣∣∣∣
(
1

n

n∑
i=1

Xi(t)X
T
i (t)

)−1 1

n

n∑
i=1

Xi(t)εi(t)

∣∣∣∣∣
=

∣∣∣∣∣Σ̂−1
X (t, t)

1

n

n∑
i=1

Xi(t)εi(t)

∣∣∣∣∣ ,
and of its first derivative (using the product rule) as∣∣∣β̂(1)(t)− β(1)(t)

∣∣∣
=

∣∣∣∣∣D(1)
(
Σ̂−1
X (t, t)

) 1
n

n∑
i=1

D(0)
(
Xi(t)εi(t)

)
+D(0)

(
Σ̂−1
X (t, t)

) 1
n

n∑
i=1

D(1)
(
Xi(t)εi(t)

)∣∣∣∣∣ , (28)

where
∣∣∣β̂(t)− β(t)

∣∣∣ and ∣∣∣β̂(1)(t)− β(1)(t)
∣∣∣ denote the absolute values of the K-dimensional

vectors of estimation errors. Recall that derivatives of vector- or matrix-valued functions
are simply computed separately for each vector- or matrix-component. By Lemma 8, we
have that for d ∈ {0, 1}

sup
s,t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

D(d)
(
Xi(s)εi(t)

)
− E

[
D(d)

(
X(s)ε(t)

)]∣∣∣∣∣ a.s.→ 0
(K×1)

. (29)

And under the assumptions of Theorem 10 we find, for d ∈ {0, 1},

E
[
D(d)

(
X(s)ε(t)

)]
= D(d)

(
E
(
X(s)ε(t)

))
= 0

(K×1)
. (30)

28



Adaptive SPBs for Concurrent Functional Linear Regression

The case of d = 0 follows directly by conditional independence. For d = 1, we can in-
terchange differentiation and expectation by the dominated convergence theorem, and the
fact that |X(t)ε(t)| can be bounded by Z = supt∈[0,1] |X(t)ε(t)|2 + 1 almost surely, where
E[Z] < ∞ by Assumption 4 (b). Thus, by Equation (29) and (30), the result from Theo-
rem 10 (c) and the uniform continuous mapping theorem, we find

sup
t∈[0,1]

∣∣∣β̂(t)− β(t)
∣∣∣ = sup

t∈[0,1]

∣∣∣∣∣Σ̂−1
X (t, t)

1

n

n∑
i=1

Xi(t)εi(t)

∣∣∣∣∣
a.s.→ sup

t∈[0,1]

∣∣Σ−1
X (t, t)E (X(t)ε(t))

∣∣ = 0
(K×1)

.

Following Equation (28), to show the claim for β̂(1) we require uniform convergence results
for the terms n−1

∑n
i=1D

(1) (Xi(t)εi(t)) and D(1)Σ̂−1
X (t, t). For the first term, the claim

holds directly by Lemma 7, and for the second term by Theorem 10 (c). Thus, by the
uniform continuous mapping theorem, we then have

sup
t∈[0,1]

|β̂(1)(t)− β(1)(t)|

≤ sup
t∈[0,1]

|D(1)
(
Σ̂−1
X (t, t)

)
| sup
t∈[0,1]

| 1
n

n∑
i=1

D(0)(Xi(t)εi(t))|

+ sup
t∈[0,1]

|D(0)
(
Σ̂−1
X (t, t)

)
| sup
t∈[0,1]

| 1
n

n∑
i=1

D(1)(Xi(t)εi(t))|

a.s→ sup
t∈[0,1]

|D1(E[X(t)XT(t)]−1)| sup
t∈[0,1]

|E[X(t)ε(t)]|︸ ︷︷ ︸
=0

+ sup
t∈[0,1]

|(E[X(t)XT(t))]−1| sup
t∈[0,1]

|E[D1(X(t)ε(t))]|︸ ︷︷ ︸
=supt∈[0,1] |D1E[X(t)ε(t)]|=0

= 0
(K×1)

.

(f) We will first show the case (d, p) = (0, 0). Recall that

ei(t) = Yi(t)−XT
i (t)β̂(t)

= XT
i (t)β(t) + εi(t)−XT

i (t)β̂(t)

= εi(t)−XT
i (t)

(
β̂(t)− β(t)

)
.

And thus, we can decompose the covariance estimator as follows:
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σ̂ε(s, t) =
1

n

n∑
i=1

ei(s)ei(t)

=
1

n

n∑
i=1

(
εi(s)−XT

i (s)
(
β̂(s)− β(s)

))(
εi(t)−XT

i (t)
(
β̂(t)− β(t)

))
=

(
1

n

n∑
i=1

εi(s)εi(t)

−
(
β̂(s)− β(s)

)T 1

n

n∑
i=1

Xi(s)εi(t)

−
(
β̂(t)− β(t)

)T 1

n

n∑
i=1

Xi(t)εi(s)

+
(
β̂(s)− β(s)

)T 1

n

n∑
i=1

Xi(s)X
T
i (t)

(
β̂(t)− β(t)

))

=
1

n

n∑
i=1

εi(s)εi(t) + Un(s, t)

= σε(s, t) +
1

n

n∑
i=1

(εi(s)εi(t)− E[ε(s)ε(t)]) + Un(s, t),

which implies that

sup
s,t∈[0,1]

|σ̂ε(s, t)− σε(s, t)| ≤ sup
s,t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

(εi(s)εi(t)− E[ε(s)ε(t)])

∣∣∣∣∣+ sup
s,t∈[0,1]

|Un(s, t)| .

Now, the first term on the right-hand side converges to zero almost surely by Lemma 8,
while the second term converges to zero almost surely by an application of the Cauchy-
Schwarz inequality, Theorem 10 (b) and (e), Equation (29), and the uniform continuous
mapping theorem. And hence,

sup
s,t∈[0,1]

|σ̂ε(s, t)− σε(s, t)| a.s.→ 0.

For the case (d, p) = (0, 1), remember from above that

σ̂ε(s, t)− σε(s, t) =
1

n

n∑
i=1

(εi(s)εi(t)− E[ε(s)ε(t)]) + Un(s, t),

and so,

sup
s,t∈[0,1]

|σ̂(0,1)
ε (s, t)− σ(0,1)

ε (s, t)|

≤ sup
s,t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

(
εi(s)ε

(1)
i (t)− E[ε(s)ε(1)(t)]

)∣∣∣∣∣+ sup
s,t∈[0,1]

|U (0,1)
n (s, t)|.
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The first term on the right-hand side converges to zero almost surely by Lemma 8. For

the second term, notice that U
(0,1)
n (s, t) is a continuous composition of β̂(d)(t)−β(d)(t), and

averages of X
(d)
i (s)ε(p)(t) and X

(d)
i (s)X

(p)
i (t)T. For the OLS estimator and its derivative,

almost sure uniform convergence has been shown by Theorem 10 (e), and for the averages,
it has been shown in Lemma 8. Thus, by the uniform continuous mapping theorem

sup
s,t∈[0,1]

|U (0,1)
n (s, t)| a.s.→ 0,

which proves the result. The case (d, p) = (1, 0) follows by symmetry. And for the case
(d, p) = (1, 1), notice that

sup
s,t∈[0,1]

|σ̂(1,1)
ε (s, t)− σ(1,1)

ε (s, t)|

≤ sup
s,t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

(
ε
(1)
i (s)ε

(1)
i (t)− E[ε(1)(s)ε(1)(t)]

)∣∣∣∣∣+ sup
s,t∈[0,1]

|U (1,1)
n (s, t)|.

Employing the same arguments as for the case (d, p) = (0, 1), the result follows by Theo-
rem 10 (e), Lemma 8 and an application of the uniform continuous mapping theorem.

(g) Let xnew : [0, 1] → RK ∈ C1([0, 1],RK) be a deterministic function with xnew(t) ̸=
0 for all t ∈ [0, 1]. Since xnew is deterministic and each path xnew(t)j as well as its
derivative, are continuous, there exists a finite upper bound 0 < M < ∞, such that

max{|xnew(t)j |, |x(1)new(t)j |} ≤ M for all j ∈ {1, . . . ,K} and t ∈ [0, 1]. We further recall,
that σxnew(s, t) = xTnew(s)Σ

−1
X (s, t)xnew(t) and σ̂xnew(s, t) = xTnew(s)Σ̂

−1
X (s, t)xnew(t). In The-

orem 10 (d) it has been shown that, for d, p ∈ {0, 1},

sup
s,t∈[0,1]

∥Σ̂−1(d,p)

X (s, t)− Σ−1(d,p)

X (s, t)∥ a.s.→ 0.

Now, notice that we can write

σ̂xnew(s, t)− σxnew(s, t) = xTnew(s)
(
Σ̂−1
X (s, t)− Σ−1

X (s, t)
)
xnew(t)

=

K∑
l=1

K∑
m=1

xnew(s)l

{
Σ̂−1
X (s, t)− Σ−1

X (s, t)
}
lm

xnew(t)m︸ ︷︷ ︸
=:clm(s,t)

.

And so,

sup
s,t∈[0,1]

|σ̂(d,p)
xnew

(s, t)− σ(d,p)
xnew

(s, t)| ≤
K∑
l=1

K∑
m=1

sup
s,t∈[0,1]

|c(d,p)lm (s, t)|

Pick any l,m ∈ {1, . . . ,K} and focus on the case d = p = 0 first. We find

sup
s,t∈[0,1]

|c(0,0)lm (s, t)| = sup
s,t∈[0,1]

|xnew(s)l
{
Σ̂−1
X (s, t)− Σ−1

X (s, t)
}
lm

xnew(t)m|

≤ M2 sup
s,t∈[0,1]

∥Σ̂−1
X (s, t)− Σ−1

X (s, t)∥

a.s.→ 0.
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For the case d = 1 and p = 0, applying the product rule, we have

c
(1,0)
lm (s, t)

= x
(1)
new(s)l

{
Σ̂−1
X (s, t)− Σ−1

X (s, t)
}
lm

xnew(t)m

+ xnew(s)l

{
Σ̂−1(1,0)

X (s, t)− Σ−1(1,0)

X (s, t)
}
lm

xnew(t)m,

and so,

sup
s,t∈[0,1]

|c(1,0)lm (s, t)| ≤ M2 sup
s,t∈[0,1]

∥Σ̂−1
X (s, t)− Σ−1

X (s, t)∥

+M2 sup
s,t∈[0,1]

∥Σ̂−1(1,0)

X (s, t)− Σ−1(1,0)

X (s, t)∥

a.s.→ 0.

The case d = 0 and p = 1 is analogous by symmetry. For the last case, d = p = 1, we have

c
(1,1)
lm (s, t) = x

(1)
new(s)l

{
Σ̂−1
X (s, t)− Σ−1

X (s, t)
}
lm

x
(1)
new(t)m

+ x
(1)
new(s)l

{
Σ̂−1(0,1)

X (s, t)− Σ−1(0,1)

X (s, t)
}
lm

xnew(t)m

+ xnew(s)l

{
Σ̂−1(1,0)

X (s, t)− Σ−1(1,0)

X (s, t)
}
lm

x
(1)
new(t)m

+ xnew(s)l

{
Σ̂−1(1,1)

X (s, t)− Σ−1(1,1)

X (s, t)
}
lm

xnew(t)m,

and therefore,

sup
s,t∈[0,1]

|c(1,1)lm (s, t)| ≤ M2 sup
s,t∈[0,1]

∥Σ̂−1
X (s, t)− Σ−1

X (s, t)∥

+M2 sup
s,t∈[0,1]

∥Σ̂−1(0,1)

X (s, t)− Σ−1(0,1)

X (s, t)∥

+M2 sup
s,t∈[0,1]

∥Σ̂−1(1,0)

X (s, t)− Σ−1(1,0)

X (s, t)∥

+M2 sup
s,t∈[0,1]

∥Σ̂−1(1,1)

X (s, t)− Σ−1(1,1)

X (s, t)∥

a.s.→ 0.

Since K is finite, we get

sup
s,t∈[0,1]

|σ̂(d,p)
xnew

(s, t)− σ(d,p)
xnew

(s, t)| ≤
K∑
l=1

K∑
m=1

sup
s,t∈[0,1]

|c(d,p)lm (s, t)| a.s.→ 0.
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Theorem 11 (CLT for Functional OLS Estimator) Let β̂ = {β̂(t), t ∈ [0, 1]} denote
the ordinary least squares (OLS) estimator,

β̂(t) =

( n∑
i=1

Xi(t)X
T
i (t)

)−1 n∑
i=1

Xi(t)Yi(t)

of β = {β(t), t ∈ [0, 1]}. Under Assumptions 1 - 5, it holds that

√
n
(
β̂ − β

)
→D GK(0, cβ), in C[0, 1], as n → ∞,

where GK(0, cβ) is a mean-zero K-dimensional Gaussian process with covariance function
cβ(s, t) = σε(s, t)Σ

−1
X (s, t), where Σ−1

X (s, t) = (E[X(s)XT(t)])−1.

Proof We can write

√
n
(
β̂(t)− β(t)

)
=

(
1

n

n∑
i=1

Xi(t)X
T
i (t)

)−1
1√
n

n∑
i=1

Xi(t)εi(t),

and in Theorem 10 (a) we have shown that

sup
t∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

Xi(t)X
T
i (t)− E

[
X(t)XT(t)

]∣∣∣∣∣ a.s.→ 0
(K×K)

.

Let Xi · εi = {Xi(t)εi(t) : t ∈ [0, 1]} denote the pointwise multiplication of the processes Xi

and εi. We start by showing that n−1/2
∑n

i=1(Xi · εi) converges in C[0, 1] to a mean zero
Gaussian process with covariance kernel

cXε(s, t) = E[(X(s)ε(s))(X(t)ε(t))T].

To show convergence of the multivariate process, we employ the Cramer-Wold device. Let
λ ∈ RK be arbitrary and focus on the process

1√
n

n∑
i=1

λT(Xi · εi).

To show convergence of this real-valued process in C[0, 1], we need to show (1) its finite-
dimensional distributions converge to those of the limit process, and (2) the process is
stochastically equicontinuous. The result then follows by Theorem 7.5 in Billingsley (1999).
Since the data is iid, the finite-dimensional distributions converge by a standard central
limit theorem. Moreover, above we showed that Xi,k · εi is stochastically equicontinuous for
each k = 1, . . . ,K; and therefore λT(Xi · εi) is stochastically equicontinuous. Thus,

1√
n

n∑
i=1

λT(Xi · εi) →D G
(
0, λTcXελ

)
in C[0, 1],

As λ was arbitrarily chosen, by the Cramer-Wold device, we have

1√
n

n∑
i=1

Xi · εi →D GK (0, cXε) in C[0, 1].
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A functional version of Slutsky’s Theorem then gives

√
n
(
β̂ − β

)
→D GK (0, cβ) in C[0, 1],

where cβ(s, t) = E [X(s)X(t)]−1 cXε(s, t)E [X(s)X(t)]−1. Under Assumption 2, we have

E[X(s)ε(s)ε(t)XT(t)] = σε(s, t)E[X(s)X(t)],

and so,
cβ(s, t) = σε(s, t)E [X(s)X(t)]−1 ,

which corresponds to the homoskedastic case. In the heteroskedastic case, the formula for
the covariance kernel does not simplify and is identified by

cβ(s, t) = E [X(s)X(t)]−1 E[X(s)ε(s)ε(t)XT(t)]E [X(s)X(t)]−1 .

Theorem 12 (Consistency of the roughness estimators) Under Assumptions 1-6, it
holds that, as n → ∞,

(a) supt∈[0,1] |τ̂SPB(t)− τSPB(t)| a.s.→ 0 with τSPB > 0, and

(b) supt∈[0,1] |τ̂SCB(t)− τSCB(t)| a.s.→ 0 with τSCB > 0.

Proof (a) By Lemma 9, we know that τSPB = τσε which we estimate using τ̂SPB = τσ̂ε . By
Assumption 6, we therefore have τSPB > 0. In Theorem 10 (f), we have shown that

sup
s,t∈[0,1]

∣∣∣σ̂(d,p)
ε (s, t)− σ(d,p)

ε (s, t)
∣∣∣ a.s.→ 0. (31)

for d, p ∈ {0, 1}. The partial derivative

∂2

∂s∂t

σ̂ε(s, t)√
σ̂ε(s, s)σ̂ε(t, t)

can be constructed by combining the results in Equation (31) using continuous functions
(addition, multiplication, and division). Therefore, by the functional continuous mapping
theorem,

sup
s,t∈[0,1]

∣∣∣∣∣ ∂2

∂s∂t

σ̂ε(s, t)√
σ̂ε(s, s)σ̂ε(t, t)

− ∂2

∂s∂t

σε(s, t)√
σε(s, s)σε(t, t)

∣∣∣∣∣ a.s.→ 0,

and so

sup
t∈[0,1]

∣∣∣∣∣ ∂2

∂s∂t

σ̂ε(s, t)√
σ̂ε(s, s)σ̂ε(t, t)

∣∣∣∣
(s,t)=(t,t)

− ∂2

∂s∂t

σε(s, t)√
σε(s, s)σε(t, t)

∣∣∣∣
(s,t)=(t,t)

∣∣∣∣∣ a.s.→ 0

=⇒ sup
t∈[0,1]

∣∣τσ̂ε(t)
2 − τσε(t)

2
∣∣ a.s.→ 0 =⇒ sup

t∈[0,1]
|τ̂SPB(t)− τSPB(t)| a.s.→ 0.
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(b) Let xnew : [0, 1] → RK ∈ C1([0, 1],RK) be a continuously differentiable deterministic
function with xnew(t) ̸= 0 for all t ∈ [0, 1]. Define σxnew(s, t) = xTnew(s)Σ

−1
X (s, t)xnew(t) as

in Assumption 6, and σ̂xnew(s, t) = xTnew(s)Σ̂
−1
X (s, t)xnew(t). By Lemma 9, we know that

τSPB = τc, with c(s, t) = σε(s, t)σxnew(s, t). Consider the correlation function c̃ based on c:

c̃(s, t) =
c(s, t)√

c(s, s)c(t, t)
=

(
σε(s, t)√

σε(s, s)σε(t, t)

)(
σxnew(s, t)√

σxnew(s, s)σxnew(t, t)

)
= σ̃ε(s, t)σ̃xnew(s, t).

Taking partial derivatives yields

∂2

∂s∂t
c̃(s, t) =

∂2

∂s∂t
(σ̃ε(s, t)σ̃xnew(s, t)) (32)

= σ̃(1,1)
ε (s, t)σ̃xnew(s, t) + σ̃ε(s, t)σ̃

(1,1)
xnew

(s, t) + σ̃(1,0)
ε (s, t)σ̃(0,1)

xnew
(s, t) + σ̃(0,1)

ε (s, t)σ̃(1,0)
xnew

(s, t),

where σ(d,p) denotes the d-th partial derivative in the first variable and p-th partial derivative
in the second variable of σ. This implies that

τ2SPB(t) =
∂2

∂s∂t
c̃(s, t)|(s,t)=(t,t)

= τ2σε
(t) + τ2σxnew

(t) +
(
σ̃(1,0)
ε (s, t)σ̃(0,1)

xnew
(s, t) + σ̃(0,1)

ε (s, t)σ̃(1,0)
xnew

(s, t)
)
|(s,t)=(t,t).

And since τ2σε
(t) > 0 and τ2σxnew

(t) > 0 by Assumption 6, and because

σ̃(1,0)
ε (s, t)σ̃(0,1)

xnew
(s, t)|(s,t)=(t,t) ≥ 0 and σ̃(0,1)

ε (s, t)σ̃(1,0)
xnew

(s, t)|(s,t)=(t,t) ≥ 0,

we know that τSPB(t) > 0.

Let us now show uniform convergence. We have already shown uniform convergence of the
partial derivatives of σ̂ε (Equation 31). In Theorem 10 (g), we have further shown that

sup
s,t∈[0,1]

|σ̂(d,p)
xnew

(s, t)− σ(d,p)
xnew

(s, t)| a.s.→ 0,

for d, p ∈ {0, 1}. Writing out Equation (32) for the empirical case (where we estimate
σSCB(s, t) by σ̂SCB(s, t) = σ̂ε(s, t)σ̂xnew(s, t)), we see that the above statements, combined
with the uniform continuous mapping theorem, imply that

sup
s,t∈[0,1]

∣∣∣∣∣ ∂2

∂s∂t

σ̂SCB(s, t)√
σ̂SCB(s, s)σ̂SCB(t, t)

− ∂2

∂s∂t

σSCB(s, t)√
σSCB(s, s)σSCB(t, t)

∣∣∣∣∣ a.s.→ 0,

and so,

sup
s,t∈[0,1]

∣∣∣∣∣ ∂2

∂s∂t

σ̂SCB(s, t)√
σ̂SCB(s, s)σ̂SCB(t, t)

|(s,t)=(t,t) −
∂2

∂s∂t

σSCB(s, t)√
σSCB(s, s)σSCB(t, t)

|(s,t)=(t,t)

∣∣∣∣∣ a.s.→ 0

=⇒ sup
t∈[0,1]

∣∣τσ̂SCB
(t)2 − τσSCB

(t)2
∣∣ a.s.→ 0 =⇒ sup

t∈[0,1]
|τ̂SCB(t)− τSCB(t)| a.s.→ 0.

35



Creutzinger, Liebl, Mensinger and Sharp

References
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