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Our basic assumptions, are essentially equivalent to those in Ruppert and
Wand (1994) with some straightforward adjustments to our functional data
and time series context.

A1 (Asymptotic Scenario) nm→∞, wherem = mn ≥ 2 such thatmn � nθ
with 0 ≤ θ < ∞. Hereby, “mn � nθ” denotes that the two sequences
mn and nθ are asymptotically equivalent, i.e., that limn→∞(mn/n

θ) =
C with constant 0 < C <∞.

A2 (Random Design) The triple (Yij , Uij , Zi) has the same distribution as
(Y,U, Z) with pdf fY UZ where fY UZ(y, u, z) > 0 for all (y, u, z) ∈
R × [0, 1]2 and zero else. The error term εij is iid and independent
from Xc

s , Us`, and Zs for all s = 1, . . . , n and ` = 1, . . . ,m.
A3 (Smoothness & Kernel) The pdf fY UZ(y, u, z) and its marginals are con-

tinuously differentiable. All second-order derivatives of the function µ
are continuous. The (auto-)covariance functions γl((u1, z1), (u2, z2)) =
E(Xc

i (u1, z1)X
c
i+l(u2, z2)), l ≥ 0, are continuously differentiable for all

points within their supports. The multiplicative kernel functions Kµ

and Kγ are products of second-order kernel functions κ.
A4 (Moments & Dependency) Xi, Uij , and Zi are strictly stationary, er-

godic, and weakly dependent time series with auto-covariances that
converge uniformly to zero at a geometrical rate. It is assumed that
E(Xi(u, z)

4) <∞, E(εij) = 0, E(ε2ij) = σ2ε <∞ for all (u, z), i, and j.
A5 (Bandwidths) hµ,U , hµ,Z → 0 and (nm)hµ,Uhµ,Z → ∞ as nm → ∞.

hµ,U , hµ,Z → 0 and (nM)h2µ,Uhµ,Z →∞ as nM →∞.

Remark. Assumption A1 is a simplified version of the asymptotic setup of
Zhang and Wang (2016). The case θ = 0 implies that m is bounded which
corresponds to a simplified version of the finite-m asymptotic considered by
Jiang and Wang (2010). For 0 < θ <∞ we can consider all further scenarios
from sparse to dense functional data. In line with our real data application,
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we consider a deterministic m as also done, for instance, by Hall, Müller and
Wang (2006). However, our results are generalizable to a random m using
some minor modifications.

APPENDIX A: PROOFS

The following Lemma A.1 builds the basis of our theoretical results.

Lemma A.1 (Bias and Variance of µ̂). Let (u, z) be an interior point
of [0, 1]2. Under Assumptions A1-A5 the conditional asymptotic bias and
variance of the LLK estimator µ̂ in Eq. (2.2) are then given by

(i)Bias {µ̂(u, z;hµ,U , hµ,Z)|U,Z} = Bµ(u, z) + op(h
2
µ,U + h2µ,Z) with

Bµ(u, z) =
1

2
ν2(Kµ)

(
h2µ,U µ

(2,0)(u, z) + h2µ,Z µ
(0,2)(u, z)

)
, where

µ(k,l)(u, z) = (∂k+l/(∂uk∂zl))µ(u, z).

(ii) V {µ̂(u, z;hµ,U , hµ,Z)|U,Z} =
(
V I
µ(u, z) + V II

µ (u, z)
)

(1 + op(1))with

V I
µ(u, z) = (nm)−1

[
h−1µ,Uh

−1
µ,Z R(Kµ)

γ(u, u, z) + σ2ε
fUZ(u, z)

]
and

V II
µ (u, z) = n−1

[(
m− 1

m

)
h−1µ,Z R(κ)

γ(u, u, z)

fZ(z)

]
.

Proof of Lemma A.1. Our proof of Lemma A.1 generally follows that
of Ruppert and Wand (1994), and differs only from the latter reference as
we consider additionally a conditioning variable Zi, a function-valued error
term, and a time series context.

Proof of Lemma A.1, part (i): For simplicity, consider a second-order
kernel function κ with compact support such as the Epanechnikov kernel;
this is, of course, without loss of generality. Let (u, z) be a interior point
of [0, 1]2 and define Hµ = diag(h2µ,U , h

2
µ,Z), U = (U11, . . . , Unm)>, and Z =

(Z1, . . . , Zn)>. Using a Taylor-expansion of µ around (u, z), the conditional
bias of the estimator µ̂(u, z;H) can be written as

E(µ̂(u, z;Hµ)− µ(u, z)|U,Z) =(A.1)

=
1

2
e>1

(
(nm)−1[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz]
)−1
×

× (nm)−1[1,Uu,Zz]
>Wµ,uz (Qµ(u, z) + Rµ(u, z)) ,

where Qµ(u, z) is a nm× 1 vector with typical elements

(Uij − u, Zi − z)Hµ(u, z)(Uij − u, Zi − z)> ∈ R



TESTING DIFFERENCES IN ELECTRICITY PRICES III

with Hµ(u, z) being the Hessian matrix of the regression function µ(u, z).
The nm × 1 vector Rµ(u, z) holds the remainder terms as in Ruppert and
Wand (1994).

Next we derive asymptotic approximations for the 3× 3 matrix(
(nm)−1[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz]
)−1

and the 3× 1 matrix

(nm)−1[1,Uu,Zz]
>Wµ,uzQµ(u, z) of the right hand side of Eq. (A.1). Using

standard arguments from nonparametric statistics it is easy to derive that
(nm)−1[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz] =(
fUZ(u, z) + op(1) ν2(Kµ)DfUZ

(u, z)>Hµ + op(1
>Hµ)

ν2(Kµ)HµDfUZ
(u, z) + op(Hµ1) ν2(Kµ)HµfUZ(u, z) + op(Hµ)

)
,

where 1 = (1, 1)> and DfUZ (u, z) is the vector of first order partial deriva-
tives (i.e., the gradient) of the pdf fUZ at (u, z). Inversion of the above block
matrix yields (

(nm)−1[1,Uu,Zz]
>Wµ,uz[1,Uu,Zz]

)−1
=(A.2)

(
(fUZ(u, z))

−1
+ op(1) −DfUZ

(u, z)> (fUZ(u, z))
−2

+ op(1
>)

−DfUZ
(u, z) (fUZ(u, z))

−2
+ op(1) (ν2(Kµ)HµfUZ(u, z))

−1
+ op(Hµ)

)
.

The 3× 1 matrix (nm)−1[1,Uu,Zz]
>Wµ,uzQµ(u, z) can be partitioned as

following:

(nm)−1[1,Uu,Zz]
>Wµ,uzQµ(u, z) =

(
upper element

lower bloc

)
,

where the 1× 1 dimensional upper element can be approximated by

(nm)−1
∑
ij

Kµ,h(Uij − u, ZI − z)(Uij − u, ZI − z)Hµ(u, z)(Uij − u, ZI − z)>
(A.3)

= (ν2(κ))
2
tr {HµHµ(u, z)} fUZ(u, z) + op(tr(Hµ))

and the 2× 1 dimensional lower bloc is equal to

(nm)−1
∑
ij

{
Kµ,h(Uij − u, ZI − z)(Uij − u, ZI − z)Hµ(u, z)(Uij − u, Zi − z)>

}
×

(A.4)

× (Uij − u, ZI − z)> = Op(H
3/2
µ 1).
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Plugging the approximations of Eqs. (A.2)-(A.4) into the first summand of
the conditional bias expression in Eq. (A.1) leads to the following expression

1

2
e>1
(
(nm)−1[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz]
)−1×

× (nm)−1[1,Uu,Zz]
>Wµ,uzQµ(u, z) =

=
1

2
(ν2(κ))2 tr {HµHµ(u, z)}+ op(tr(Hµ)).

Furthermore, it is easily seen that the second summand of the conditional
bias expression in Eq. (A.1), which holds the remainder term, is given by

1

2
e>1
(
(nm)−1[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz]
)−1×

× (nm)−1[1,Uu,Zz]
>Wµ,uzRµ(u, z) = op(tr(Hµ)).

Summation of the two latter expressions yields the asymptotic approxima-
tion of the conditional bias

E(µ̂(u, z;Hµ)− µ(u, z)|U,Z) =
1

2
(ν2(κ))2 tr {HµHµ(u, z)}+ op(tr(Hµ)).

Proof of Lemma A.1, part (ii): In the following we derive the conditional
variance of the local linear estimator V(µ̂(u, z;Hµ)|U,Z) =

=e>1
(
[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz]
)−1×

× [1,Uu,Zz]
>Wµ,uz Cov(Y|U,Z)Wµ,uz[1,Uu,Zz]×

× ([1,Uu,Zz]
>Wµ,uz[1,Uu,Zz])

−1e1

(A.5)

=e>1 ((nm)−1[1,Uu,Zz]
>Wµ,uz[1,Uu,Zz])

−1×
× ((nm)−2[1,Uu,Zz]

>Wµ,uz Cov(Y|U,Z)Wµ,uz[1,Uu,Zz])×
× ((nm)−1[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz])
−1e1,

where Cov(Y|U,Z) is a nm× nm matrix with typical elements

Cov(Yij , Y`k|Uij , U`k, Zi, Z`) =γ|i−`|((Uij , Zi), (U`k, Z`))+

+ σ2ε1(i = ` and j = k);

with 1(.) being the indicator function.
We begin with analyzing the 3× 3 matrix

(nm)−2[1,Uu,Zz]
>Wµ,uz Cov(Y|U,Z)Wµ,uz[1,Uu,Zz]

using the following three Lemmas A.2-A.4.
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Lemma A.2. The upper-left scalar (block) of the matrix
(nm)−2[1,Uu,Zz]

>Wµ,uzCov(Y|U,Z)Wµ,uz[1,Uu,Zz] is given by

(nm)−21>Wµ,uzCov(Y|U,Z)Wµ,uz1

= (nm)−1fUZ(u, z)|Hµ|−1/2R(Kµ)
(
γ(u, u, z) + σ2

ε

)
(1 +Op(tr(H

1/2
µ )))

+ n−1(fUZ(u, z))2
[(

m− 1

m

)
h−1µ,ZR(κ)

γ(u, u, z)

fZ(z)
+ c(u, z)

]
(1 +Op(tr(H

1/2)))

= Op((nm)−1|Hµ|−1/2) +Op(n
−1h−1µ,Z),

where c(u, z) = 2
∑n−1

l=1 γl((u, z), (u, z)). Under Assumption A4 there exists
a constant C, 0 < C <∞, such that 0 ≤ |c(u, z)| ≤ C.

Lemma A.3. The 1× 2 dimensional upper-right block of the matrix
(nm)−2[1,Uu,Zz]

>Wµ,uzCov(Y|U,Z)Wµ,uz[1,Uu,Zz] is given by

(nm)−21>Wµ,uzCov(Y|U,Z)Wµ,uz

 (U11 − u, Z1 − z)
...

(Unm − u, Zn − z)


= (nm)−1fUZ(u, z)|Hµ|−1/2(1>H1/2

µ )R(Kµ)
(
γ(u, u, z) + σ2

ε

)
(1 +Op(tr(H

1/2
µ )))

+ n−1(fUZ(u, z))2(1>H1/2
µ )

[(
m− 1

m

)
h−1µ,ZR(κ)

γ(u, u, z)

fZ(z)
+ cr

]
(1 +Op(tr(H

1/2
µ )))

= Op((nm)−1|Hµ|−1/2(1>H1/2
µ )) +Op(n

−1(1>H1/2
µ )h−1µ,Z),

where c(u, z) = 2
∑n−1

l=1 γl((u, z), (u, z)). Under Assumption A4 there exists
a constant C, 0 < C <∞, such that 0 ≤ |c(u, z)| ≤ C.

Remark. The 2× 1 dimensional lower-left block of the matrix
(nm)−2[1,Uu,Zz]

>Wµ,uzCov(Y|U,Z)Wµ,uz[1,Uu,Zz] is simply the trans-
posed version of the result in Lemma A.3.
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Lemma A.4. The 2× 2 lower-right block of the matrix
(nm)−2[1,Uu,Zz]

>Wµ,uzCov(Y|U,Z)Wµ,uz[1,Uu,Zz] is given by

(nm)−2
(
((U11 − u), (Z1 − z))>, . . . , ((Unm − u), (Zn − z)>)

)
×

×Wµ,uzCov(Y|U,Z)Wµ,uz

 (U11 − u, Z1 − z)
...

(Unm − u, Zn − z)


= (nm)−1fUZ(u, z)|Hµ|−1/2HµR(Kµ)

(
γ(u, u, z) + σ2

ε

)
(1 +Op(tr(H

1/2
µ )))

+ n−1(fUZ(u, z))2Hµ

[(
m− 1

m

)
h−1µ,ZR(κ)

γ(u, u, z)

fZ(z)
+ cr

]
(1 +Op(tr(H

1/2
µ )))

= Op((nm)−1|Hµ|−1/2Hµ) +Op(n
−1Hµh

−1
µ,Z),

where c(u, z) = 2
∑n−1

l=1 γl((u, z), (u, z)). Under Assumption A4 there exists
a constant C, 0 < C <∞, such that 0 ≤ |c(u, z)| ≤ C.

Using the approximations for the bloc-elements of the matrix
(nm)−2[1,Uu,Zz]

>Wµ,uzCov(Y|U,Z)Wµ,uz[1,Uu,Zz], given by the Lem-
mas A.2-A.4, and the approximation for the matrix(
(nm)−1[1,Uu,Zz]

>Wµ,uz[1,Uu,Zz]
)−1

, given in (A.2), we can approxi-
mate the conditional variance of the bivariate local linear estimator, given in
(A.5). Some straightforward matrix algebra leads to V(µ̂(u, z;Hµ)|U,Z) =

(nm)−1|Hµ|−1/2
{
R(Kµ)

(
γ(u, u, z) + σ2

ε

)
fUZ(u, z)

}
(1 + op(1))

+ n−1
[(

m− 1

m

)
h−1µ,ZR(κ)

γ(u, u, z)

fZ(z)
+ cr

]
(1 + op(1)) ,

which is asymptotically equivalent to our variance statement of Lemma A.1
part (ii).
Proof of Lemma A.2. (The proofs of Lemmas A.3 and A.4 can be done
correspondingly.) To show Lemma A.2 it will be convenient to split the
sum such that (nm)−21>Wµ,uzCov(Y|U,Z)Wµ,uz1 = s1 + s2 + s3. Using
standard procedures from kernel density estimation leads to

s1 = (nm)−2
∑
ij

(Kµ,h(Uij − u, ZI − z))2 V(Yij |U,Z)

(A.6)

= (nm)−1|Hµ|−1/2fUZ(u, z)R(Kµ)
(
γ(u, u, z) + σ2

ε

)
+O((nm)−1|Hµ|−1/2 tr(H1/2

µ ))

s2 = (nm)−2
∑
jk

∑
i`
i 6=`

Kµ,h(Uij − u, ZI − z) Cov(Yij , Y`k|U,Z)Kµ,h(U`k − x, Z` − z)
(A.7)

= n−1(fUZ(u, z))2c(u, z) +Op(n
−1tr(H1/2

µ ))
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s3 = (nm)−2
∑
ij

i 6=j

∑
t

h−1µ,Uκ(h−1µ,U (Uij − u))(h−1µ,Zκ(h−1µ,Z(ZI − z)))2 Cov(Yij , Yjt|U,Z)×

(A.8)

× h−1µ,Uκ(h−1µ,U (Uik − x))

= n−1(fUZ(u, z))2
[(

m− 1

m

)
h−1µ,ZR(κ)

γ(u, u, z)

fZ(z)

]
+Op(n

−1tr(H1/2
µ )),

where c(u, z) = 2
∑n−1

l=1 γl((u, z), (u, z)). Summing up (A.6)-(A.7) leads to
the result in Lemma A.2. Lemmas A.3 and A.4 differ from Lemma A.2 only

with respect to the additional factors 1>H
1/2
µ and Hµ. These come in due

to the usual substitution step for the additional data parts (Uij −u, Zi− z).

Proofs of Theorem 2.1 and Corollary 2.1. Theorem 2.1 and Corollary
2.1 follow directly from Lemma A.1 and from applying a central limit the-
orem for strictly stationary ergodic times series such as Theorem 9.5.5 in
Karlin and Taylor (1975).

APPENDIX B: DATA SOURCES

Hourly spot prices of the German electricity market are provided by the
European Energy Power Exchange (EPEX) (www.epexspot.com), hourly
values of Germany’s gross electricity demand and electricity exchanges with
other countries are provided by the European Network of Transmission Sys-
tem Operators for Electricity (www.entsoe.eu). German wind and solar
power infeed data are provided by the transparency platform of the Euro-
pean Energy Exchange (www.eex-transparency.com). German air temper-
ature data are available from the German Weather Service (www.dwd.de).
The daily prices for natural gas are provided via the trading platform PE-
GAS, which is part of the European Energy Exchange (EEX) Group oper-
ated by Powernext (www.powernext.com). Daily prices for European CO2

Emission Allowances (EUA) and for the Amsterdam-Rotterdam-Antwerp
(ARA) coal futures are provided via the websites of the EEX (www.eex.com)
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